Learning image representations tied to ego-motion

Dinesh Jayaraman
The University of Texas at Austin

dineshj@cs.utexas.edu

Kristen Grauman The University of Texas at Austin

grauman@cs.utexas.edu

ICCV 2015

Motivation

- Self-supervised learning approaches for videos
 - Future visual representation prediction
 - Tracking objects
 - Colorization
 - More...?

Wang et. al, ICCV 2015

Vondrick et. al, ECCV 2018

Motivation

• Kitten carousel experiment [Held, R. and Hein A. (1963)]

 learn representations that exploit the parallel signals of ego-motion and pixels

Methods

- High level ideas
 - Mining ego-motion patterns from video
 - Learning the transformation between image (feature) pairs
 - Regularizing (incorporating) a recognition task

Methods – Mining Ego-motion Patterns

 Organize training sample pairs into a discrete set of ego-motion patterns

• Apply k-means to obtain G clusters, with $p \in \{1, ..., G\}$ denotes motion pattern ID

• Input & Label: $\langle (x_i, x_j), p_{ij} \rangle$

Methods – Ego-motion Equivariance

- $\forall x \in \mathcal{X} : \mathbf{z}_{\theta}(gx) \approx M_g \mathbf{z}_{\theta}(x).$
- z_{θ} : feature space, M_g : equivariance map
- M_g represents the affine transformation in the feature space that corresponds to transformation g in the pixel space
- "the learned feature space will *not* be limited to preserving equivariance for pairs originating from the same ego-motions" -> why?

Methods – Ego-motion Equivariance

- $\forall x \in \mathcal{X} : \mathbf{z}_{\theta}(gx) \approx M_g \mathbf{z}_{\theta}(x).$
- z_{θ} : feature space, M_{g} : equivariance map
- M_g represents the affine transformation in the feature space that corresponds to transformation g in the pixel space
- "the learned feature space will *not* be limited to preserving equivariance for pairs originating from the same ego-motions" -> why?

$$\mathbf{z}(d\boldsymbol{x}) = \mathbf{z}((r \circ u)\boldsymbol{x}) = M_r\mathbf{z}(u\boldsymbol{x}) = M_rM_u\mathbf{z}(\boldsymbol{x})$$

Methods – Learning Objective

•
$$(\boldsymbol{\theta}^*, \mathcal{M}^*) = \underset{\boldsymbol{\theta}, \mathcal{M}}{\operatorname{arg \, min}} \sum_{g} \sum_{\{(i,j): p_{ij} = g\}} d\left(M_g \mathbf{z}_{\boldsymbol{\theta}}(\boldsymbol{x}_i), \mathbf{z}_{\boldsymbol{\theta}}(\boldsymbol{x}_j)\right)$$

Shall not work, why?

Methods – Learning Objective

•
$$(\boldsymbol{\theta}^*, \mathcal{M}^*) = \underset{\boldsymbol{\theta}, \mathcal{M}}{\operatorname{arg \, min}} \sum_{g} \sum_{\{(i,j): p_{ij} = g\}} d\left(M_g \mathbf{z}_{\boldsymbol{\theta}}(\boldsymbol{x}_i), \mathbf{z}_{\boldsymbol{\theta}}(\boldsymbol{x}_j)\right)$$

Shall not work, why?

•
$$(\boldsymbol{\theta}^*, \mathcal{M}^*) = \underset{\boldsymbol{\theta}, \mathcal{M}}{\operatorname{arg \, min}} \sum_{g,i,j} d_g \left(M_g \mathbf{z}_{\boldsymbol{\theta}}(\boldsymbol{x}_i), \mathbf{z}_{\boldsymbol{\theta}}(\boldsymbol{x}_j), p_{ij} \right)$$

$$d_g(\boldsymbol{a}, \boldsymbol{b}, c) = \mathbb{1}(c = g)d(\boldsymbol{a}, \boldsymbol{b}) +$$

$$\mathbb{1}(c \neq g) \max(\delta - d(\boldsymbol{a}, \boldsymbol{b}), 0),$$

Methods – Regularizing in a Recognition Task

• Suppose in addition to ego-annotated pairs \mathcal{U} , also given a small set of class-labeled static images \mathcal{L}

•
$$(\boldsymbol{\theta}^*, W^*, \mathcal{M}^*) = \underset{\boldsymbol{\theta}, W, \mathcal{M}}{\arg\min} L_c(\boldsymbol{\theta}, W, \mathcal{L}) + \lambda L_e(\boldsymbol{\theta}, \mathcal{M}, \mathcal{U}),$$

•
$$L_c(W, \mathcal{L}) = -\frac{1}{N_l} \sum_{i=1}^{N_l} \log(\sigma_{c_k}(W\mathbf{z}_{\boldsymbol{\theta}}(\boldsymbol{x}_i)))$$

• W is classifier weights, σ is the softmax probability

Methods – Learning the z_{θ}

Experiments

- Target tasks
 - Recognition
 - Next-best view
 - Given one view of a object, tell a robot how to move to help recognize the object
- Datasets
 - Unsupervised learning
 - NORB
 - KITTI
 - Supervised learning
 - NORB
 - KITTI
 - SUN

Experiments

- Baselines
 - CLSNET trained on only supervised samples
 - TEMPORAL temporal coherence $\theta^* = \arg\min_{\theta} \sum_{i,j} d_1(\mathbf{z}_{\theta}(\boldsymbol{x}_i), \mathbf{z}_{\theta}(\boldsymbol{x}_j), \mathbb{1}(|t_i t_j| \leq T))$
 - DRLIM TEMOPRAL but with $\ell 2$ distance

Tasks→	Equivariance error		Recognition accuracy %				Next-best view
Datasets→	NORB		NORB-NORB	KITTI-KITTI	KITTI-SUN	KITTI-SUN	NORB
Methods↓	atomic	composite	[25 cls]	[4 cls]	[397 cls]	[397 cls, top-10]	1-view→ 2-view
random	1.0000	1.0000	4.00	25.00	0.25	2.52	$4.00 \to 4.00$
CLSNET	0.9239	0.9145	25.11±0.72	41.81 ± 0.38	0.70 ± 0.12	6.10 ± 0.67	
TEMPORAL [21]	0.7587	0.8119	35.47±0.51	45.12 ± 1.21	1.21 ± 0.14	8.24 ± 0.25	$29.60 \rightarrow 31.90$
DRLIM [9]	0.6404	0.7263	36.60 ± 0.41	47.04 ± 0.50	1.02 ± 0.12	6.78 ± 0.32	$14.89 \rightarrow 17.95$
EQUIV	0.6082	0.6982	38.48 ± 0.89	50.64 ± 0.88	1.31 ± 0.07	8.59 ± 0.16	38.52→43.86
EQUIV+DRLIM	0.5814	0.6492	40.78±0.60	50.84 ± 0.43	1.58 ± 0.17	9.57 ± 0.32	38.46→43.18

Table 1. (Left) Average equivariance error (Eq (9)) on NORB for ego-motions like those in the training set (atomic) and novel ego-motions (composite). (Center) Recognition result for 3 datasets (mean ± standard error) of accuracy % over 5 repetitions. (Right) Next-best view selection accuracy %. Our method EQUIV (and augmented with slowness in EQUIV+DRLIM) clearly outperforms all baselines.

Equivariance Error: $\rho_g = E\left[\|\mathbf{z}_{\boldsymbol{\theta}}(\boldsymbol{x}) - \boldsymbol{M}_g^{'}\mathbf{z}_{\boldsymbol{\theta}}(g\boldsymbol{x})\|_2 / \|\mathbf{z}_{\boldsymbol{\theta}}(\boldsymbol{x}) - \mathbf{z}_{\boldsymbol{\theta}}(g\boldsymbol{x})\|_2\right]$

Tasks→	Equivariance error		Recognition accuracy %				Next-best view
Datasets→	NORB		NORB-NORB	KITTI-KITTI	KITTI-SUN	KITTI-SUN	NORB
Methods↓	atomic	composite	[25 cls]	[4 cls]	[397 cls]	[397 cls, top-10]	1-view→ 2-view
random	1.0000	1.0000	4.00	25.00	0.25	2.52	$4.00 \to 4.00$
CLSNET	0.9239	0.9145	25.11±0.72	41.81 ± 0.38	0.70 ± 0.12	6.10 ± 0.67	-
TEMPORAL [21]	0.7587	0.8119	35.47±0.51	45.12 ± 1.21	1.21 ± 0.14	8.24 ± 0.25	29.60→ 31.90
DRLIM [9]	0.6404	0.7263	36.60±0.41	47.04 ± 0.50	1.02 ± 0.12	6.78 ± 0.32	$14.89 \rightarrow 17.95$
EQUIV	0.6082	0.6982	38.48 ± 0.89	50.64 ± 0.88	1.31 ± 0.07	8.59 ± 0.16	38.52→43.86
EQUIV+DRLIM	0.5814	0.6492	40.78±0.60	50.84 ± 0.43	1.58 ± 0.17	9.57 ± 0.32	38.46→43.18

Table 1. (Left) Average equivariance error (Eq (9)) on NORB for ego-motions like those in the training set (atomic) and novel ego-motions (composite). (Center) Recognition result for 3 datasets (mean ± standard error) of accuracy % over 5 repetitions. (Right) Next-best view selection accuracy %. Our method EQUIV (and augmented with slowness in EQUIV+DRLIM) clearly outperforms all baselines.

Tasks→	Equivariance error		Recognition accuracy %				Next-best view
Datasets→	NORB		NORB-NORB	KITTI-KITTI	KITTI-SUN	KITTI-SUN	NORB
Methods↓	atomic	composite	[25 cls]	[4 cls]	[397 cls]	[397 cls, top-10]	1-view→ 2-view
random	1.0000	1.0000	4.00	25.00	0.25	2.52	$4.00 \to 4.00$
CLSNET	0.9239	0.9145	25.11±0.72	41.81 ± 0.38	0.70 ± 0.12	6.10±0.67	-
TEMPORAL [21]	0.7587	0.8119	35.47±0.51	45.12 ± 1.21	1.21 ± 0.14	8.24 ± 0.25	29.60→ 31.90
DRLIM [9]	0.6404	0.7263	36.60±0.41	47.04 ± 0.50	1.02 ± 0.12	6.78 ± 0.32	14.89→ 17.95
EQUIV	0.6082	0.6982	38.48±0.89	50.64 ± 0.88	1.31 ± 0.07	8.59 ± 0.16	38.52→43.86
EQUIV+DRLIM	0.5814	0.6492	40.78±0.60	50.84 ± 0.43	1.58 ± 0.17	9.57±0.32	38.46→43.18

Table 1. (Left) Average equivariance error (Eq (9)) on NORB for ego-motions like those in the training set (atomic) and novel ego-motions (composite). (Center) Recognition result for 3 datasets (mean ± standard error) of accuracy % over 5 repetitions. (Right) Next-best view selection accuracy %. Our method EQUIV (and augmented with slowness in EQUIV+DRLIM) clearly outperforms all baselines.

Tasks→	Equivariance error		Recognition accuracy %				Next-best view
Datasets→	NORB		NORB-NORB	KITTI-KITTI	KITTI-SUN	KITTI-SUN	NORB
Methods↓	atomic	composite	[25 cls]	[4 cls]	[397 cls]	[397 cls, top-10]	1-view→ 2-view
random	1.0000	1.0000	4.00	25.00	0.25	2.52	$4.00 \to 4.00$
CLSNET	0.9239	0.9145	25.11±0.72	41.81 ± 0.38	0.70 ± 0.12	6.10 ± 0.67	-
TEMPORAL [21]	0.7587	0.8119	35.47±0.51	45.12 ± 1.21	1.21 ± 0.14	8.24 ± 0.25	29.60→ 31.90
DRLIM [9]	0.6404	0.7263	36.60±0.41	47.04±0.50	1.02 ± 0.12	6.78 ± 0.32	$14.89 \rightarrow 17.95$
EQUIV	0.6082	0.6982	38.48±0.89	50.64 ± 0.88	1.31 ± 0.07	8.59 ± 0.16	38.52→43.86
EQUIV+DRLIM	0.5814	0.6492	40.78±0.60	50.84 ± 0.43	1.58 ± 0.17	9.57±0.32	38.46→43.18

Table 1. (Left) Average equivariance error (Eq (9)) on NORB for ego-motions like those in the training set (atomic) and novel ego-motions (composite). (Center) Recognition result for 3 datasets (mean ± standard error) of accuracy % over 5 repetitions. (Right) Next-best view selection accuracy %. Our method EQUIV (and augmented with slowness in EQUIV+DRLIM) clearly outperforms all baselines.

Figure 4. Nearest neighbor image pairs (cols 3 and 4 in each block) in pairwise equivariant feature difference space for various query image pairs (cols 1 and 2 per block). For comparison, cols 5 and 6 show pixel-wise difference-based neighbor pairs. The direction of ego-motion in query and neighbor pairs (inferred from ego-pose vector differences) is indicated above each block. See text.

Contributions

• "Embodied" approach to feature learning that generates features equivariant to ego-motion

- Promising results on multiple datasets and on multiple tasks
 - beneficial for many downstream tasks & other future applications

Questions?