Learning to Separate Object Sounds by Watching Unlabeled Video

Ruohan Gao¹, Rogerio Feris², and Kristen Grauman^{1,3}

¹The University of Texas at Austin ²IBM Research ³Facebook AI Research

ECCV 2018

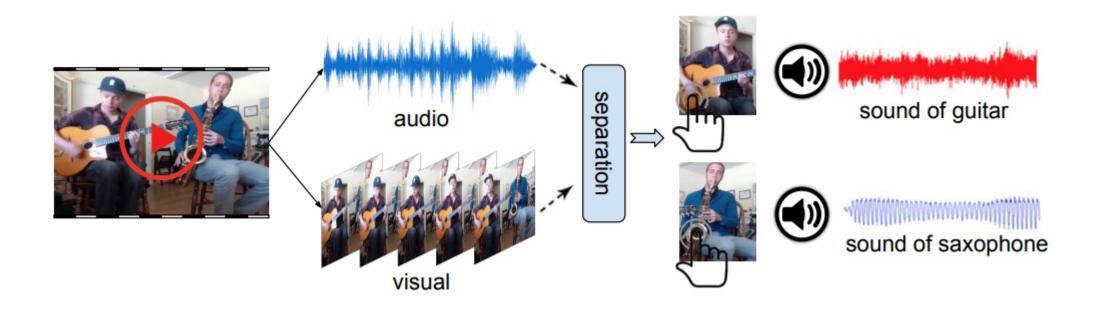
Presenter: Yan-Bo Lin 11-08-2021

Overview

- Introduction
- Motivation
- Proposed framework
- Dataset
- Results
- Conclusion
- Discussion

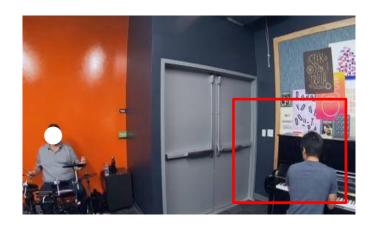
Introduction

- What is Audio-visual source separation?
 - Input: a video with audio track.
 - Output: separated sound corresponding to objects

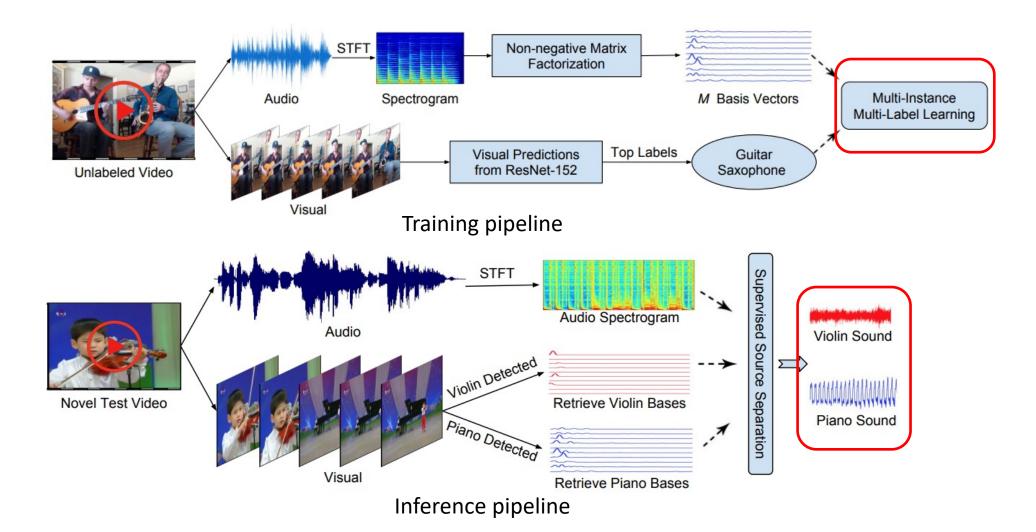


Motivation

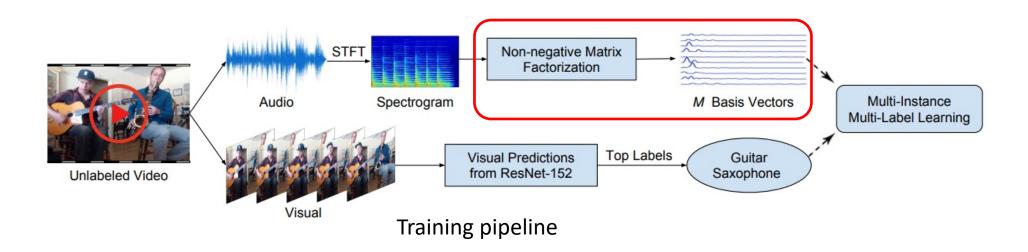
- Limitation of traditional works on audio source separation:
 - Traditional approaches aim to learn audio basis of object sound.
 - Audio source separation requires clean single audio source.
- Visual contents from unlabeled video can served as a supervisory signal for audio.



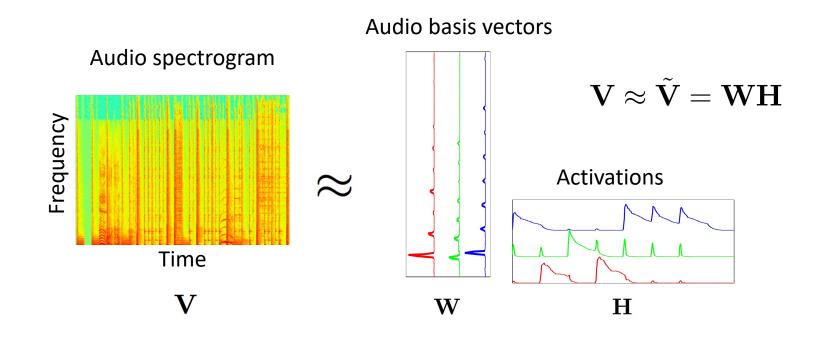
Noted that pipelines during training and inference time are different.



 Non-negative matrix factorization (NMF) aims to decompose audio spectrogram into basis and corresponding weights.

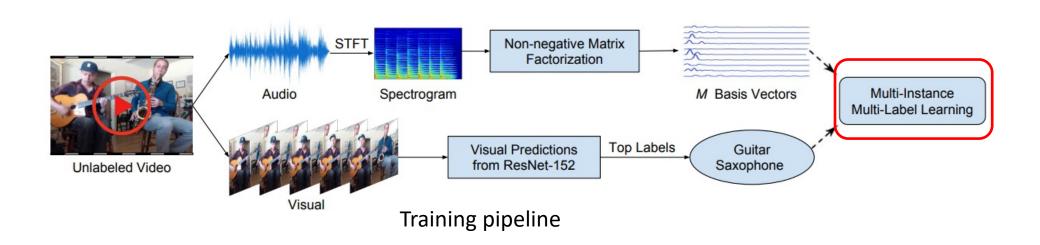


 Non-negative matrix factorization (NMF) aims to decompose audio spectrogram into basis and corresponding weights.

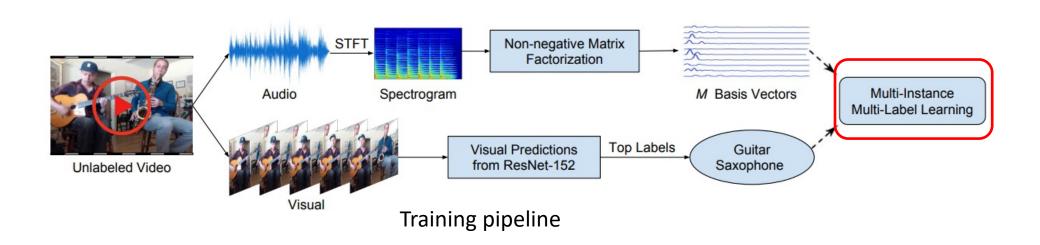


7

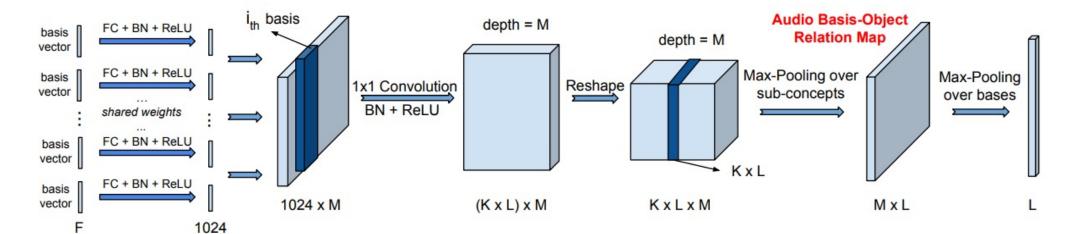
- After obtaining M (pre-defined) audio basis (taking W only), proposed method leverage multi-instance learning framework to associate audio-visual information.
- MIL framework can address noise labels from ResNet.



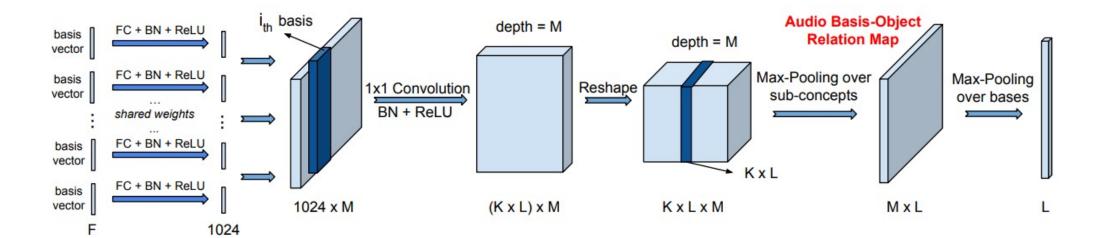
- MIL aims to associate information in bag-level.
 - For example, the visual prediction may contains guitar and saxophone. However, the video may contain guitar sound only.
 - In this setting, the positive bag is that at least one audio sound and a object are associated.



- MIL aims to associate information in bag-level.
 - There are M basis vector with 1024-Dimension.
 - 1024-D features are decomposed into **K** sub-concepts with **L** object categories.
 - Max-pooling first apply over sub-concept and then over M basis.



- MIL aims to associate information in bag-level.
 - The loss encourage scores of the correct classes larger than incorrect ones by a margin of 1.
 - The classes are predicted from ResNet.

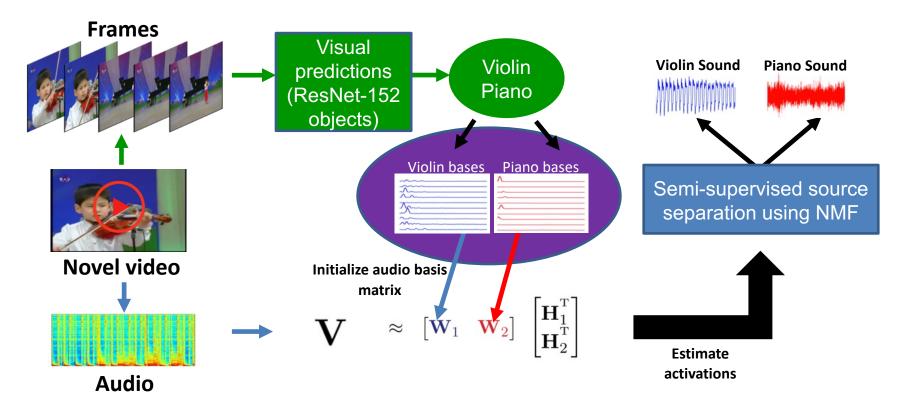


Apply multi-label hinge loss
$$\mathcal{L}(A,\mathcal{V}) = \frac{1}{L} \sum_{i=1,i\neq\mathcal{V}_j}^{L} \sum_{j=1}^{|\mathcal{V}|} \max[0,1-(A_{\mathcal{V}_j}-A_{\tilde{i}})]$$

$$A \in \mathbb{R}^L$$

Proposed Method (Inference)

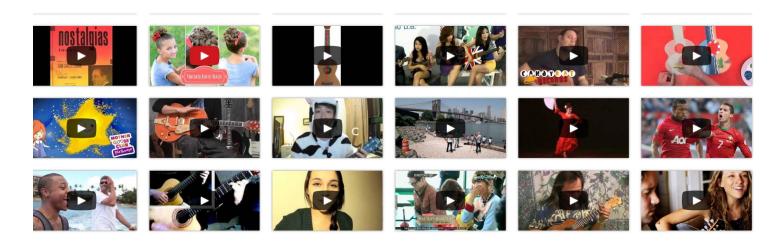
- Given a video, the proposed model leverages learned W and H to separate sounds.
 - Specifically, W is fixed and applied for all videos. H is estimated from given a video.



Examples adapted from Ruohan's slide

Dataset:

- AudioSet-Unlabeled is adapted from audioset with filtering pre-defined labels. ~100k videos
- AudioSet-SingleSource is for evaluation. All videos are single source video. ~23 videos.
- AV-Bench is toy example with 3 videos (Violin Yanni, Wooden Horse, and Guitar).



Example of audioset

- Results and metrics:
 - Given a mixed source from two single sources, the model aims to separate these two sources.
 - The results are reported in SDR. Higher is better.

		\sim T I			ı •	
	Jse the	(- 1-12	naic	to tind		nacic
·	Jac Lile	u i-ia	DCIS	LO IIIIU	auuiu	vasis

		Instrument Pair	Animal Pair	Vehicle Pair	Cross-Domain Pair
,	Upper-Bound	2.05	0.35	0.60	2.79
	K-means Clustering	-2.85	-3.76	-2.71	-3.32
MFCC Unsupervised [72]		0.47	-0.21	-0.05	1.49
	Visual Exemplar	-2.41	-4.75	-2.21	-2.28
	Unmatched Bases	-2.12	-2.46	-1.99	-1.93
	Gaussian Bases	-8.74	-9.12	-7.39	-8.21
	Ours	1.83	0.23	0.49	2.53

- Results and metrics:
 - Given a mixed source from two single sources, the model aims to separate these two sources.
 - The results are reported in SDR. Higher is better.

	Instrument Pair	Animal Pair	Vehicle Pair	Cross-Domain Pair
Upper-Bound	2.05	0.35	0.60	2.79
K-means Clustering	-2.85	-3.76	-2.71	-3.32
MFCC Unsupervised [72]	0.47	-0.21	-0.05	1.49
Visual Exemplar	-2.41	-4.75	-2.21	-2.28
Unmatched Bases	-2.12	-2.46	-1.99	-1.93
Gaussian Bases	-8.74	-9.12	-7.39	-8.21
Ours	1.83	0.23	0.49	2.53

Use the sound from other videos to guide NMF (e.g., two video contains guitars.)

Results on audio-visual denoising on AV-Bench in Normalized SDR.

	Wooden Horse	Violin Yanni	Guitar Solo	Average
Sparse CCA (Kidron et al. [47])	4.36	5.30	5.71	5.12
JIVE (Lock et al. [55])	4.54	4.43	2.64	3.87
Audio-Visual (Pu et al. [62])	8.82	5.90	14.1	9.61
Ours	12.3	7.88	11.4	10.5

- Demo video.
 - Train on 100,000 unlabeled multi-source video clips, then separate audio for novel video

Conclusion

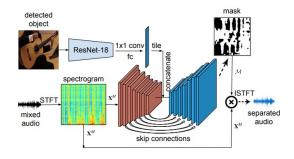
- This paper leverages unlabeled videos to perform source separation.
- MIL learning can effectively associate audio and visual information in such noise videos.

Is NMF a good way to separate sounds?

Does proposed method truly leverage unlabeled video?

Limitation from object labels.

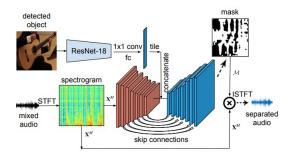
Is NMF a good way to separate sounds?



Does proposed method truly leverage unlabeled video?

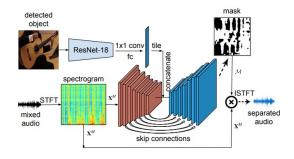
Limitation from object labels.

Is NMF a good way to separate sounds?



- Does proposed method truly leverage unlabeled video?
 - It is based on some assumptions: objects present in video; some videos are filtered.
- Limitation from object labels.

Is NMF a good way to separate sounds?



- Does proposed method truly leverage unlabeled video?
 - It is based on some assumptions: objects present in video; some videos are filtered.
- Limitation from object labels.

