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Introduction

® What is Audio-visual source separation?

® Input: a video with audio track.

® QOutput: separated sound corresponding to objects
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Motivation

® Limitation of traditional works on audio source separation:
® Traditional approaches aim to learn audio basis of object sound.

® Audio source separation requires clean single audio source.

® Visual contents from unlabeled video can served as a supervisory signal for audio.

We may find several unlabeled videos containing piano sounds.



Proposed Method

® Noted that pipelines during training and inference time are different.
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Proposed Method

® Non-negative matrix factorization (NMF) aims to decompose audio spectrogram into
basis and corresponding weights.
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Proposed Method

® Non-negative matrix factorization (NMF) aims to decompose audio spectrogram into
basis and corresponding weights.
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Proposed Method

® After obtaining M (pre-defined) audio basis (taking W only), proposed method
leverage multi-instance learning framework to associate audio-visual information.

® MIL framework can address noise labels from ResNet.
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Proposed Method

® MIL aims to associate information in bag-level.

® For example, the visual prediction may contains guitar and saxophone. However, the video may contain
guitar sound only.

® |n this setting, the positive bag is that at least one audio sound and a object are associated.
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Proposed Method

® MIL aims to associate information in bag-level.
® There are M basis vector with 1024-Dimension.
® 1024-D features are decomposed into K sub-concepts with L object categories.

® Max-pooling first apply over sub-concept and then over M basis.
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Proposed Method

® MIL aims to associate information in bag-level.

® The loss encourage scores of the correct classes larger than incorrect ones by a margin of 1.

® The classes are predicted from ResNet.
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Proposed Method (Inference)

® Given a video, the proposed model leverages learned W and H to separate sounds.
® Specifically, W is fixed and applied for all videos. H is estimated from given a video.
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Experiment

® Dataset:

® AudioSet-Unlabeled is adapted from audioset with filtering pre-defined labels. ~100k videos
® AudioSet-SingleSource is for evaluation. All videos are single source video. ~23 videos.

® AV-Bench is toy example with 3 videos (Violin Yanni, Wooden Horse, and Guitar).
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Experiment

® Results and metrics:

® Given a mixed source from two single sources, the model aims to separate these two sources.

® The results are reported in SDR. Higher is better.

Use the GT-labels to find audio basis Instrument Pair|Animal Pair|Vehicle Pair|Cross-Domain Pair

|Upper—Bound | 2.05 0.35 0.60 2.79
K-means Clustering -2.85 376 D -3.32
MFCC Unsupervised [72] 0.47 -0.21 -0.05 1.49
Visual Exemplar -2.41 -4.75 -2.21 -2.28
Unmatched Bases -2.12 -2.46 -1.99 -1.93
Gaussian Bases -8.74 -9.12 -7.39 -8.21
Ours 1.83 0.23 0.49 2.53
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® Results and metrics:

Experiment

® Given a mixed source from two single sources, the model aims to separate these two sources.

® The results are reported in SDR. Higher is better.

Instrument Pair

Animal Pair

Vehicle Pair

Cross-Domain Pair

Upper-Bound 2.05 0.35 0.60 2.79
K-means Clustering -2.85 -3.76 -2.71 -3.32
MFCC Unsupervised [72] 0.47 -0.21 -0.05 1.49
Visual Exemplar -2.41 -4.75 -2.21 -2.28
Unmatched Bases -2.12 -2.46 -1.99 -1.93
Gaussian Bases -8.74 -9.12 -7.39 -8.21
Ours 1.83 0.23 0.49 2.53

Use the sound from other videos to guide NMF (e.g., two video contains guitars.)
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Experiment

® Results on audio-visual denoising on AV-Bench in Normalized SDR.

IWooden Horse

Violin Yanni | Guitar Solo I Average

Sparse CCA (Kidron et al. [47]) 4.36 5.30 5.71 5.12
JIVE (Lock et al. [55]) 4.54 4.43 2.64 3.87
Audio-Visual (Pu et al. [62]) 8.82 5.90 14.1 9.61
Ours 12.3 7.88 114 10.5
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Experiment

® Demo video.

®Train on 100,000 unlabeled multi-source video clips, then separate audio for novel video




Conclusion

® This paper leverages unlabeled videos to perform source separation.

® MIL learning can effectively associate audio and visual information in such noise videos.



Discussion

® |s NMF a good way to separate sounds?

® Does proposed method truly leverage unlabeled video?

® Limitation from object labels.
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