LEARNING CORRESPONDENCE FROM THE CYCLE-CONSISTENCY OF TIME

Xiaolong Wang Carnegie Mellon University

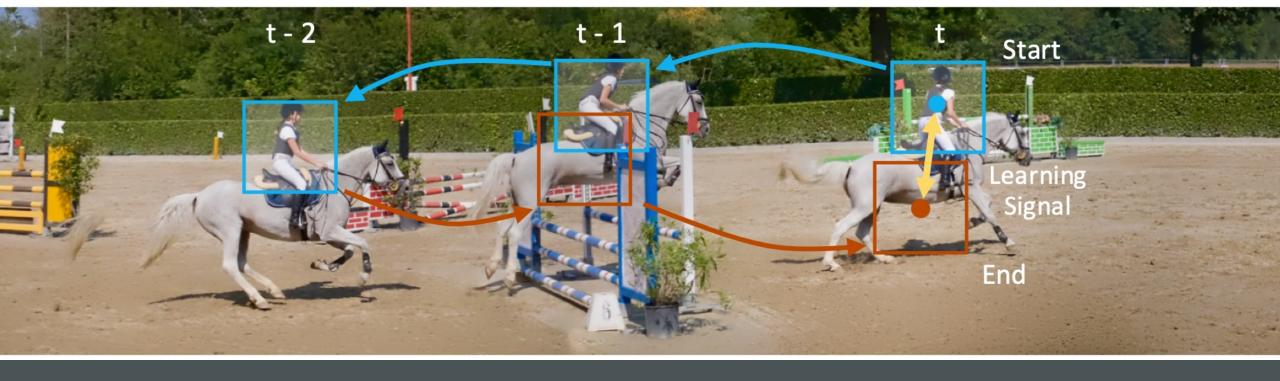
Allan Jabri* UC Berkeley

Alexei A. Efros UC Berkeley

https://arxiv.org/pdf/1903.07593.pdf

CORRESPONDENCE

- Pixel level: Optical Flow
 - Training data limitation: Synthetic datasets may not match real images
- Object level:Tracking
 - Training data limitation: human annotation of objects



CYCLE CONSISTENCY

- Concept: define a powerful feature descriptor network ϕ and a weak tracking operator $\mathcal T$ that together track a patch through an image
- Loss: how "cycle consistent" is ϕ when combined with ${\mathcal T}$

NOTATION:

• $I_{t-k:t}$

• *p*_t

· ϕ

• $x_{t-k:t}^I$

• x_t^p

• T

A sequence of k+1 images from a video

A patch from image t

An encoder that produces a grid of feature vectors

$$\phi(I_{t-k:t})$$

 $k+1 \times c \times 30 \times 30$

$$\phi(p_t)$$

 $\phi(p_t)$ c x 10 x 10

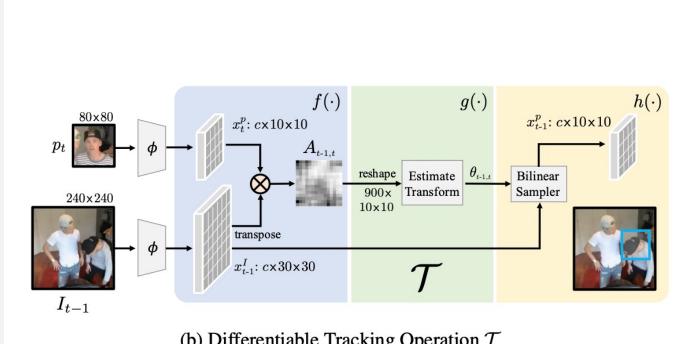
$$\chi_s^I \times \chi_t^p \to \chi_s^p$$

 \mathcal{T} finds the patch in x_s^I that is most similar to x_t^p

TRAINING PROCESS

A: 900 *x* 100

•
$$A(i,j) = \frac{e^{x^I(j) \cdot x^p(i)}}{\sum_j e^{x^I(j) \cdot x^p(i)}}$$



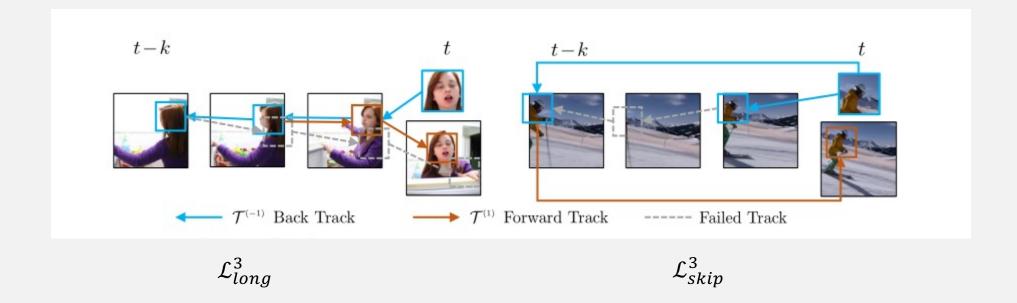
(b) Differentiable Tracking Operation ${\mathcal T}$

ITERATE OPERATOR $\mathcal T$

$$\mathcal{T}^{(i)}(x_{t-i}^{I}, x^{p}) = \mathcal{T}(x_{t-1}^{I}, \mathcal{T}(x_{t-2}^{I}, ... \mathcal{T}(x_{t-i}^{I}, x^{p})))$$

$$\mathcal{T}^{(-i)}(x_{t-1}^I, x^p) = \mathcal{T}(x_{t-i}^I, \mathcal{T}(x_{t-i+1}^I, ... \mathcal{T}(x_{t-1}^I, x^p)))$$

FULL LOSS



$$\cdot \mathcal{L} = \sum_{i} \mathcal{L}_{sim}^{i} + \lambda \mathcal{L}_{skip}^{i} + \lambda \mathcal{L}_{long}^{i}$$

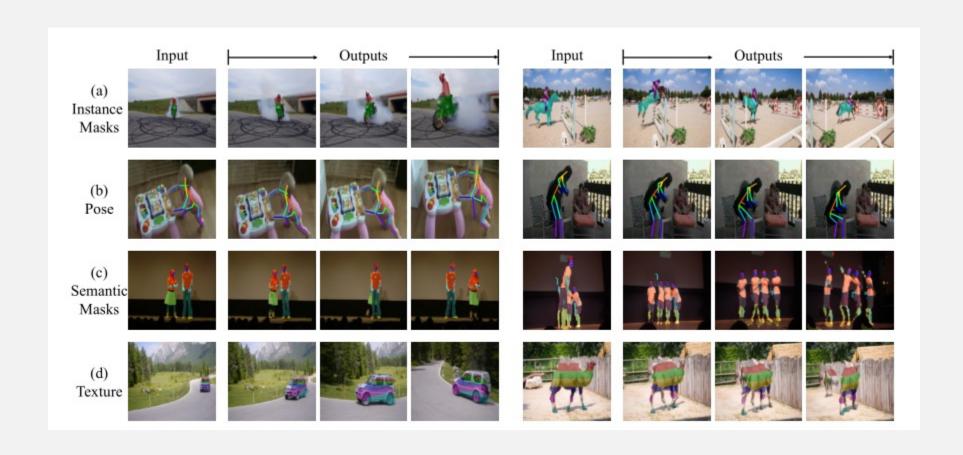
INFERENCE PROCESS

- Drop $\mathcal T$ entirely! Just use features from ϕ
- Propagate labels:
 - Now A is over whole image instead of patch

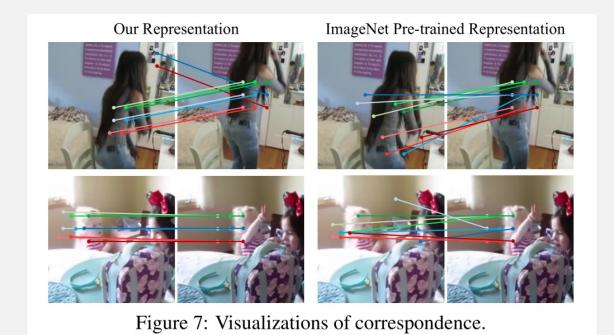
•
$$A(j,i) = \frac{e^{x_{t-1}^{I}(j) \cdot x_{t}^{I}(i)}}{\sum_{j} e^{x_{t-1}^{I}(j) \cdot x_{t}^{I}(i)}}$$

- $y_i = \sum_j A_{t-1,t}(j,i) y_j$
- Finally, label map upsampled

VISUAL RESULTS



VISUAL RESULTS



NUMERICAL RESULTS

DAVIS mask propagation

model	Supervised	$\mathcal{J}(Mean)$	$\mathcal{F}(Mean)$
Identity		22.1	23.6
Random Weights (ResNet-50)		12.4	12.5
Optical Flow (FlowNet2) [22]		26.7	25.2
SIFT Flow [39]		33.0	35.0
Transitive Inv. [74]		32.0	26.8
DeepCluster [8]		37.5	33.2
Video Colorization [69]		34.6	32.7
Ours (ResNet-18)		40.1	38.3
Ours (ResNet-50)		41.9	39.4
ImageNet (ResNet-50) [18]	√	50.3	49.0
Fully Supervised [81, 7]	1	55.1	62.1

JHMDB pose propagation

model	Supervised	PCK@.1	PCK@.2
Identity		43.1	64.5
Optical Flow (FlowNet2) [22]		45.2	62.9
SIFT Flow [39]		49.0	68.6
Transitive Inv. [74]		43.9	67.0
DeepCluster [8]		43.2	66.9
Video Colorization [69]		45.2	69.6
Ours (ResNet-18)		57.3	78.1
Ours (ResNet-50)		57.7	78.5
ImageNet (ResNet-50) [18]	√	58.4	78.4
Fully Supervised [59]	1	68.7	92.1

Table 2: Evaluation on pose propagation on JHMDB [26]. We report the PCK in different thresholds.

DISCUSSION QUESTIONS:

- Why do we use a neural network to interpret A(j, i) during training, but use it directly during test time?
 - Why do we learn rotation during training but not use it during test time?
- Do the authors make a convincing argument that their process is better than pretraining on ImageNet?