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Problem Overview

Cartwheeling Braiding Hair Opening a Fridge

Given a video, we want to classify it into one of the human 
action categories.



Main Challenge

At this time (i.e., ~2014-2017), most action recognition 
models relied on Imagenet pretraining.

“Two-Stream Convolutional Networks for Action Recognition in Videos“, CVPR 2014



Main Challenges

However, adapting 2D CNNs pretrained on Imagenet to 
video is not trivial.

“Large-scale Video Classification with Convolutional Neural Networks“, CVPR 2014
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video frames 1, 2, … , 10
Replace 3 x 3 convolutions 
with 2 x 3 x 3 convolutions.



“Long-term Recurrent Convolutional Networks for Visual Recognition 
and Description“, CVPR 2015

Main Challenges

However, adapting 2D CNNs pretrained on Imagenet to 
video is not trivial.



“Two-Stream Convolutional Networks for Action Recognition in Videos“, CVPR 2014

UCF-101

HMDB-51

UCF Loss
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Main Challenges

However, adapting 2D CNNs pretrained on Imagenet to 
video is not trivial.



Due to a large number of parameters, it’s difficult to train 
3D CNNs from scratch.

“Learning Spatiotemporal Features with 3D Convolutional Networks“, ICCV 2017

Main Challenges



Inflated 3D CNNs

The goal is to transform a pretrained 2D CNN into an 
equivalent 3D CNN that fully re-uses the learned Imagenet 
features.

A pretrained 2D CNN

An equivalent 3D CNN



Training 3D CNNs on Imagenet

One could train a 3D CNN on Imagenet on the stacked 
copies of an input image.

Stacked Copies 
of an Input Image

3D CNN

A Penguin



Inflated 3D CNNs

The paper propose to inflate all pretrained 2D filters to 3D.
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Inflated 3D CNNs

The paper propose to inflate all pretrained 2D filters to 3D.
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Inflated 3D CNNs

The paper propose to inflate all pretrained 2D filters to 3D.
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Inflated 3D CNNs

The paper propose to inflate all pretrained 2D filters to 3D.
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3D Convolution

3D Conv.

Learnable 3 x 3 x 3 Convolutional Kernels (Temporal, Spatial)

Time
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1 x 5 x 60 x 110



3D Convolution

3D Conv.

Learnable 3 x 3 x 3 Convolutional Kernels (Temporal, Spatial)

Time

2 x 3 x 60 x 110

1 x 5 x 60 x 110



Inflated 3D CNNs

The Inflated Inception-V1 architecture (left) and its detailed 
inception submodule (right). 



Kinetics Dataset

• ~240K YouTube videos manually annotated with 400 human 
action classes. 

• The clips last around 10s.

Cartwheeling Braiding Hair



Comparison with Prior Architectures

• I3D can be used to model longer temporal extents with 
fewer parameters than prior approaches. 

• All models are based on ImageNet pre-trained Inception-
v1, except 3D-ConvNet.



Comparison with Prior Architectures

Due to fewer parameters, it’s easier to train I3D than C3D.

• I3D can be used to model longer temporal extents with 
fewer parameters than prior approaches. 

• All models are based on ImageNet pre-trained Inception-
v1, except 3D-ConvNet.



Comparison with Prior Architectures

I3D processes many more video frames than prior state-of-the-art two-stream methods.

• I3D can be used to model longer temporal extents with 
fewer parameters than prior approaches. 

• All models are based on ImageNet pre-trained Inception-
v1, except 3D-ConvNet.



Comparison with Prior Architectures

• Evaluation is done on UCF-101, HMDB-51, and Kinetics 
datasets. 

• All models are based on ImageNet pre-trained Inception-v1, 
except 3D-ConvNet. 



Comparison with Prior Architectures

• Evaluation is done on UCF-101, HMDB-51, and Kinetics 
datasets. 

• All models are based on ImageNet pre-trained Inception-v1, 
except 3D-ConvNet. 

I3D performs best suggesting that the benefits of ImageNet pre-training extend to 3D CNNs.



Importance of Imagenet Pretraining

Performance training and testing on Kinetics with and 
without ImageNet pretraining. 



Importance of Imagenet Pretraining

Performance training and testing on Kinetics with and 
without ImageNet pretraining. 

Imagenet pretraining is beneficial even when training on large-scale datasets such as Kinetics



Generalizability of Kinetics Features

• Evaluating how well Kinetics features transfer to smaller 
UCF-101 and HMDB-51 datasets. 

• The results are evaluated with / without ImageNet 
pretrained weights



Generalizability of Kinetics Features

Kinetics pretraining leads to substantial gains on both datasets for all models.

• Evaluating how well Kinetics features transfer to smaller 
UCF-101 and HMDB-51 datasets. 

• The results are evaluated with / without ImageNet 
pretrained weights



Generalizability of Kinetics Features

Training on fixed Kinetics features leads to much better performance 
than full training on UCF / HMDB alone.

• Evaluating how well Kinetics features transfer to smaller 
UCF-101 and HMDB-51 datasets. 

• The results are evaluated with / without ImageNet 
pretrained weights



Generalizability of Kinetics Features

Imagenet pretraining is still beneficial in most cases.

• Evaluating how well Kinetics features transfer to smaller 
UCF-101 and HMDB-51 datasets. 

• The results are evaluated with / without ImageNet 
pretrained weights



Comparison to the State-of-the-Art

Comparison to all prior action recognition methods on 
UCF-101 and HMDB-51.

Two-stream I3D achieves best performance on both datasets.



Comparison to the State-of-the-Art

Comparison to all prior action recognition methods on 
UCF-101 and HMDB-51.

Kinetics pretraining brings ~5% and ~14% improvement on UCF and HMDB respectively.



Contributions

• Simple yet effective way to adapt pretrained image 
models to video. 

• Very important dataset contribution. 

• Great transfer learning performance. 

• State-of-the-art action recognition results. 

• Good ablation experiments.



Weaknesses

• The proposed model relies heavily on pretrained image-
level models. 

• The necessity for a two-stream architecture. 

• Unclear what the inflated 3D filters actually learn when 
trained on the video data. 

• Kinetics is a spatially biased dataset.



Discussion Questions

• What are some of the constraints imposed by using a 
pretrained Imagenet model?
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• What are some of the constraints imposed by using a 
pretrained Imagenet model? 

• In general, does it make sense to start with image-level 
representation and fine-tune it to video?



Discussion Questions

• What are some of the constraints imposed by using a 
pretrained Imagenet model? 

• In general, does it make sense to start with image-level 
representation and fine-tune it to video? 

• Should you put more effort into data collection or model 
development ?


