Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset

CVPR 2017

Joao Carreira, Andrew Zisserman

Problem Overview

Given a video, we want to classify it into one of the human action categories.

Cartwheeling

Braiding Hair

Opening a Fridge

At this time (i.e., ~2014-2017), most action recognition models relied on Imagenet pretraining.

(a) Spatial ConvNet.

Training setting	Dropout ratio			
framing setting	0.5	0.9		
From scratch	42.5%	52.3%		
Pre-trained + fine-tuning	70.8%	72.8%		
Pre-trained + last layer	72.7%	59.9%		

"Two-Stream Convolutional Networks for Action Recognition in Videos", CVPR 2014

However, adapting 2D CNNs pretrained on Imagenet to video is not trivial.

"Large-scale Video Classification with Convolutional Neural Networks", CVPR 2014

However, adapting 2D CNNs pretrained on Imagenet to video is not trivial.

"Long-term Recurrent Convolutional Networks for Visual Recognition and Description", CVPR 2015

However, adapting 2D CNNs pretrained on Imagenet to video is not trivial.

"Two-Stream Convolutional Networks for Action Recognition in Videos", CVPR 2014

Due to a large number of parameters, it's difficult to train 3D CNNs from scratch.

"Learning Spatiotemporal Features with 3D Convolutional Networks", ICCV 2017

The goal is to transform a pretrained 2D CNN into an equivalent 3D CNN that fully re-uses the learned Imagenet features.

Training 3D CNNs on Imagenet

One could train a 3D CNN on Imagenet on the stacked copies of an input image.

Stacked Copies of an Input Image

The paper propose to inflate all pretrained 2D filters to 3D.

$$f = \begin{array}{|c|c|c|c|c|} \hline 1 & 2 & 3 \\ \hline -5 & 6 & 1 \\ \hline 2 & -2 & -4 \end{array}$$

$$g = \begin{array}{|c|c|c|c|} \hline 1 & 2 & 1 \\ \hline 2 & -1 & -2 \\ \hline 1 & 2 & -1 \end{array}$$

$$h = g * f = \boxed{-8}$$

The paper propose to inflate all pretrained 2D filters to 3D.

a 3D grid (e.g., a video clip)

The paper propose to inflate all pretrained 2D filters to 3D.

	1	2	3			1	2	1	t- 1	
	-5	6	1	ne t		2	-1	-2	ime	
	2	-2	-4			1	2	-1	цт.	
	1	2	3] +		1	2	1	÷	
f =	-5	6	1	me	g =	2	-1	-2	ime	h = g * f = -24
	2	-2	-4			1	2	-1	Ę	
	1	2	3	- -		1	2	1	<u>~</u>	
	-5	6	1	et t		2	-1	-2	ne t+	
	2	-2	-4	fin		1	2	-1	tin	

a 3D grid (e.g., a video clip)

The paper propose to inflate all pretrained 2D filters to 3D.

a 3D grid (e.g., a video clip)

The paper propose to inflate all pretrained 2D filters to 3D.

	1	2	3	<u>-</u>		0	0	0	÷ -	
	-5	6	1	net		0	0	0	ime	
	2	-2	-4	ti		0	0	0	ц.	
	1	2	3			1	2	1	t.	
f =	-5	6	1	ше Ш	g =	2	-1	-2	me	$h = g * f = \boxed{-8}$
	2	-2	-4	t;		1	2	-1	ţ.	
				1						
	1	2	3	<u>-</u>		0	0	0	~ +	
	-5	6	1	le t		0	0	0	ne t	
	2	-2	-4	tin		0	0	0	tin	

a 3D grid (e.g., a video clip)

3D Convolution

Learnable 3 x 3 x 3 Convolutional Kernels (Temporal, Spatial)

2 x 3 x 60 x 110

3D Convolution

Learnable 3 x 3 x 3 Convolutional Kernels (Temporal, Spatial)

2 x 3 x 60 x 110

The Inflated Inception-V1 architecture (left) and its detailed inception submodule (right).

Inception Module (Inc.)

3x3x3 Max-Pool

Kinetics Dataset

- ~240K YouTube videos manually annotated with 400 human action classes.
- The clips last around 10s.

Cartwheeling

Braiding Hair

- I3D can be used to model longer temporal extents with fewer parameters than prior approaches.
- All models are based on ImageNet pre-trained Inceptionv1, except 3D-ConvNet.

Mathad	#Dogoma	Tr	aining	Testing		
Method	#Params	# Input Frames Temporal Footprint		# Input Frames	Temporal Footprint	
ConvNet+LSTM	9M	25 rgb	5s	50 rgb	10s	
3D-ConvNet	79M	16 rgb	0.64s	240 rgb	9.6s	
Two-Stream	12M	1 rgb, 10 flow	0.4s	25 rgb, 250 flow	10s	
3D-Fused	39M	5 rgb, 50 flow	28	25 rgb, 250 flow	10s	
Two-Stream I3D	25M	64 rgb, 64 flow	2.56s	250 rgb, 250 flow	10s	

- I3D can be used to model longer temporal extents with fewer parameters than prior approaches.
- All models are based on ImageNet pre-trained Inceptionv1, except 3D-ConvNet.

Mathad	#Dogoma	Tr	aining	Testing		
Method	#Params	# Input Frames Temporal Footprint		# Input Frames	Temporal Footprint	
ConvNet+LSTM	9M	25 rgb	5s	50 rgb	10s	
3D-ConvNet	79M	16 rgb	0.64s	240 rgb	9.6s	
Two-Stream	12M	1 rgb, 10 flow	0.4s	25 rgb, 250 flow	10s	
3D-Fused	39M	5 rgb, 50 flow	28	25 rgb, 250 flow	10s	
Two-Stream I3D	25M	64 rgb, 64 flow	2.56s	250 rgb, 250 flow	10s	

Due to fewer parameters, it's easier to train I3D than C3D.

- I3D can be used to model longer temporal extents with fewer parameters than prior approaches.
- All models are based on ImageNet pre-trained Inceptionv1, except 3D-ConvNet.

Mathad	#Dogoma	Tr	aining	Testing		
Method	#Params	# Input Frames Temporal Footprint		# Input Frames	Temporal Footprint	
ConvNet+LSTM	9M	25 rgb	5s	50 rgb	10s	
3D-ConvNet	79M	16 rgb	0.64s	240 rgb	9.6s	
Two-Stream	12M	1 rgb, 10 flow	0.4s	25 rgb, 250 flow	10s	
3D-Fused	39M	5 rgb, 50 flow	28	25 rgb, 250 flow	10s	
Two-Stream I3D	25M	64 rgb, 64 flow	2.56s	250 rgb, 250 flow	10s	

I3D processes many more video frames than prior state-of-the-art two-stream methods.

- Evaluation is done on UCF-101, HMDB-51, and Kinetics datasets.
- All models are based on ImageNet pre-trained Inception-v1, except 3D-ConvNet.

	UCF-101			HMDB-51			Kinetics		
Architecture	RGB	Flow	RGB + Flow	RGB	Flow	RGB + Flow	RGB	Flow	RGB + Flow
(a) LSTM	81.0	-	-	36.0	-	_	63.3	-	_
(b) 3D-ConvNet	51.6	-	-	24.3	-	_	56.1	-	-
(c) Two-Stream	83.6	85.6	91.2	43.2	56.3	58.3	62.2	52.4	65.6
(d) 3D-Fused	83.2	85.8	89.3	49.2	55.5	56.8	-	-	67.2
(e) Two-Stream I3D	84.5	90.6	93.4	49.8	61.9	66.4	71.1	63.4	74.2

- Evaluation is done on UCF-101, HMDB-51, and Kinetics datasets.
- All models are based on ImageNet pre-trained Inception-v1, except 3D-ConvNet.

	UCF-101				HMD	B-51	Kinetics		
Architecture	RGB	Flow	RGB + Flow	RGB	Flow	RGB + Flow	RGB	Flow	RGB + Flow
(a) LSTM	81.0	-	-	36.0	-	_	63.3	-	_
(b) 3D-ConvNet	51.6	-	-	24.3	-	_	56.1	-	-
(c) Two-Stream	83.6	85.6	91.2	43.2	56.3	58.3	62.2	52.4	65.6
(d) 3D-Fused	83.2	85.8	89.3	49.2	55.5	56.8	-	-	67.2
(e) Two-Stream I3D	84.5	90.6	93.4	49.8	61.9	66.4	71.1	63.4	74.2

I3D performs best suggesting that the benefits of ImageNet pre-training extend to 3D CNNs.

Importance of Imagenet Pretraining

Performance training and testing on Kinetics with and without ImageNet pretraining.

		Kinetics		ImageNet then Kinetics			
Architecture	RGB	Flow	RGB + Flow	RGB	Flow	RGB + Flow	
(a) LSTM	53.9	-	_	63.3	_	_	
(b) 3D-ConvNet	56.1	_	_	_	_	_	
(c) Two-Stream	57.9	49.6	62.8	62.2	52.4	65.6	
(d) 3D-Fused	-	_	62.7	_	_	67.2	
(e) Two-Stream I3D	68.4 (88.0)	61.5 (83.4)	71.6 (90.0)	71.1 (89.3)	63.4 (84.9)	74.2 (91.3)	

Importance of Imagenet Pretraining

Performance training and testing on Kinetics with and without ImageNet pretraining.

		Kinetics		ImageNet then Kinetics			
Architecture	RGB	Flow	RGB + Flow	RGB	Flow	RGB + Flow	
(a) LSTM	53.9	_	_	63.3	_	_	
(b) 3D-ConvNet	56.1	_	_	_	_	_	
(c) Two-Stream	57.9	49.6	62.8	62.2	52.4	65.6	
(d) 3D-Fused	-	_	62.7	_	—	67.2	
(e) Two-Stream I3D	68.4 (88.0)	61.5 (83.4)	71.6 (90.0)	71.1 (89.3)	63.4 (84.9)	74.2 (91.3)	

Imagenet pretraining is beneficial even when training on large-scale datasets such as Kinetics

- Evaluating how well Kinetics features transfer to smaller UCF-101 and HMDB-51 datasets.
- The results are evaluated with / without ImageNet pretrained weights

		UCF-101		HMDB-51			
Architecture	Original	Fixed	Full-FT	Original	Fixed	Full-FT	
(a) LSTM	81.0/54.2	88.1 / 82.6	91.0 / 86.8	36.0 / 18.3	50.8 / 47.1	53.4 / 49.7	
(b) 3D-ConvNet	-/ 51.6	- / 76.0	-/ 79.9	-/24.3	-/47.0	-/ 49.4	
(c) Two-Stream	91.2/83.6	93.9/93.3	94.2/93.8	58.3 / 47.1	66.6 / 65.9	66.6 / 64.3	
(d) 3D-Fused	89.3 / 69.5	94.3 / 89.8	94.2/91.5	56.8 / 37.3	69.9 / 64.6	71.0/66.5	
(e) Two-Stream I3D	93.4 / 88.8	97.7/97.4	98.0/97.6	66.4 / 62.2	79.7 / 78.6	81.2 / 81.3	

- Evaluating how well Kinetics features transfer to smaller UCF-101 and HMDB-51 datasets.
- The results are evaluated with / without ImageNet pretrained weights

		UCF-101		HMDB-51			
Architecture	Original	Fixed	Full-FT	Original	Fixed	Full-FT	
(a) LSTM	81.0/54.2	88.1 / 82.6	91.0 / 86.8	36.0 / 18.3	50.8 / 47.1	53.4 / 49.7	
(b) 3D-ConvNet	-/ 51.6	- / 76.0	-/ 79.9	-/24.3	-/47.0	-/ 49.4	
(c) Two-Stream	91.2/83.6	93.9/93.3	94.2/93.8	58.3 / 47.1	66.6 / 65.9	66.6 / 64.3	
(d) 3D-Fused	89.3 / 69.5	94.3 / 89.8	94.2/91.5	56.8 / 37.3	69.9 / 64.6	71.0/66.5	
(e) Two-Stream I3D	93.4 / 88.8	97.7/97.4	98.0/97.6	66.4 / 62.2	79.7 / 78.6	81.2 / 81.3	

Kinetics pretraining leads to substantial gains on both datasets for all models.

- Evaluating how well Kinetics features transfer to smaller UCF-101 and HMDB-51 datasets.
- The results are evaluated with / without ImageNet pretrained weights

	UCF-101			HMDB-51		
Architecture	Original	Fixed	Full-FT	Original	Fixed	Full-FT
(a) LSTM	81.0/54.2	88.1 / 82.6	91.0 / 86.8	36.0 / 18.3	50.8 / 47.1	53.4 / 49.7
(b) 3D-ConvNet	-/ 51.6	-/76.0	-/ 79.9	-/24.3	-/47.0	-/49.4
(c) Two-Stream	91.2/83.6	93.9/93.3	94.2/93.8	58.3 / 47.1	66.6 / 65.9	66.6 / 64.3
(d) 3D-Fused	89.3 / 69.5	94.3 / 89.8	94.2/91.5	56.8 / 37.3	69.9 / 64.6	71.0/66.5
(e) Two-Stream I3D	93.4 / 88.8	97.7/97.4	98.0/97.6	66.4 / 62.2	79.7 / 78.6	81.2 / 81.3

Training on fixed Kinetics features leads to much better performance than full training on UCF / HMDB alone.

- Evaluating how well Kinetics features transfer to smaller UCF-101 and HMDB-51 datasets.
- The results are evaluated with / without ImageNet pretrained weights

	UCF-101			HMDB-51		
Architecture	Original	Fixed	Full-FT	Original	Fixed	Full-FT
(a) LSTM	81.0/54.2	88.1 / 82.6	91.0 / 86.8	36.0 / 18.3	50.8 / 47.1	53.4 / 49.7
(b) 3D-ConvNet	-/ 51.6	- / 76.0	-/ 79.9	-/24.3	-/47.0	-/ 49.4
(c) Two-Stream	91.2/83.6	93.9/93.3	94.2/93.8	58.3 / 47.1	66.6 / 65.9	66.6 / 64.3
(d) 3D-Fused	89.3 / 69.5	94.3 / 89.8	94.2/91.5	56.8 / 37.3	69.9 / 64.6	71.0/66.5
(e) Two-Stream I3D	93.4 / 88.8	97.7/97.4	98.0/97.6	66.4 / 62.2	79.7 / 78.6	81.2 / 81.3

Imagenet pretraining is still beneficial in most cases.

Comparison to the State-of-the-Art

Comparison to all prior action recognition methods on UCF-101 and HMDB-51.

Model	UCF-101	HMDB-51
Two-Stream [27]	88.0	59.4
IDT [33]	86.4	61.7
Dynamic Image Networks + IDT [2]	89.1	65.2
TDD + IDT [34]	91.5	65.9
Two-Stream Fusion + IDT [8]	93.5	69.2
Temporal Segment Networks [35]	94.2	69.4
ST-ResNet + IDT [7]	94.6	70.3
Deep Networks [15], Sports 1M pre-training	65.2	-
C3D one network [31], Sports 1M pre-training	82.3	-
C3D ensemble [31], Sports 1M pre-training	85.2	-
C3D ensemble + IDT [31], Sports 1M pre-training	90.1	-
RGB-I3D, Imagenet+Kinetics pre-training	95.6	74.8
Flow-I3D, Imagenet+Kinetics pre-training	96.7	77.1
Two-Stream I3D, Imagenet+Kinetics pre-training	98.0	80.7
RGB-I3D, Kinetics pre-training	95.1	74.3
Flow-I3D, Kinetics pre-training	96.5	77.3
Two-Stream I3D, Kinetics pre-training	97.8	80.9

Two-stream I3D achieves best performance on both datasets.

Comparison to the State-of-the-Art

Comparison to all prior action recognition methods on UCF-101 and HMDB-51.

Model	UCF-101	HMDB-51
Two-Stream [27]	88.0	59.4
IDT [33]	86.4	61.7
Dynamic Image Networks + IDT [2]	89.1	65.2
TDD + IDT [34]	91.5	65.9
Two-Stream Fusion + IDT [8]	93.5	69.2
Temporal Segment Networks [35]	94.2	69.4
ST-ResNet + IDT [7]	94.6	70.3
Deep Networks [15], Sports 1M pre-training	65.2	-
C3D one network [31], Sports 1M pre-training	82.3	-
C3D ensemble [31], Sports 1M pre-training	85.2	-
C3D ensemble + IDT [31], Sports 1M pre-training	90.1	-
RGB-I3D, Imagenet+Kinetics pre-training	95.6	74.8
Flow-I3D, Imagenet+Kinetics pre-training	96.7	77.1
Two-Stream I3D, Imagenet+Kinetics pre-training	98.0	80.7
RGB-I3D, Kinetics pre-training	95.1	74.3
Flow-I3D, Kinetics pre-training	96.5	77.3
Two-Stream I3D, Kinetics pre-training	97.8	80.9

Kinetics pretraining brings ~5% and ~14% improvement on UCF and HMDB respectively.

Contributions

- Simple yet effective way to adapt pretrained image models to video.
- Very important dataset contribution.
- Great transfer learning performance.
- State-of-the-art action recognition results.
- Good ablation experiments.

Weaknesses

- The proposed model relies heavily on pretrained imagelevel models.
- The necessity for a two-stream architecture.
- Unclear what the inflated 3D filters actually learn when trained on the video data.
- Kinetics is a spatially biased dataset.

Discussion Questions

• What are some of the constraints imposed by using a pretrained Imagenet model?

Discussion Questions

- What are some of the constraints imposed by using a pretrained Imagenet model?
- In general, does it make sense to start with image-level representation and fine-tune it to video?

Discussion Questions

- What are some of the constraints imposed by using a pretrained Imagenet model?
- In general, does it make sense to start with image-level representation and fine-tune it to video?
- Should you put more effort into data collection or model development ?