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Video Classification

 Given a video, we want to classify it into one of the action categories.
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Modern Language Models

e Self-attention enables capturing long-range dependencies among words.
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Modern Language Models

e Self-attention enables capturing long-range dependencies among words.
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Modern Language Models
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Modern Language Models

e Self-attention enables capturing long-range dependencies among words.
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State-of-the-Art in Video Classification
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[Feichtenhofer et al. 2019]
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Channel Separated Networks
[Tran et al. 2019]
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3D Convolutions vs Self-Attention

3D Convolutions: ST Self-Attentlon ............................... :

..............................................................................

: (21 Strong inductive bias.

5 ww Can capture both short-range and Iong-?
. (= Captures short-range patterns. ;: range dependencies. 5

<) Difficult to scale.

------------------------------------------------------------------------------

*¥ Easier to scale model capacity.
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Video Decomposition

 \We decompose the video into a sequence of frame-level patches.

Transformer Encoder
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"An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale"”, Dosovitskiy et al., ICLR 2021
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1. What is the right space-time self-attention pattern?



Space-Time Self-Attention

* \We investigate several space-time self-attention schemes.
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Joint Space-Time Self-Attention
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Divided Space-Time Self-Attention

E 7 (£—1)
- 288
~ . I—lﬁ
é .. Time Att.
|

= | [n .
é .!. Space Att.
s HRZE

| [
. ERGEE MLP
. WEREAP
I
Ly 7 (%)

v/

O

lvided Space-Time
Attention (T+S)



Analysis of Self-Attention Schemes

 Each space-time self-attention scheme is evaluated on Kinetics-400, and
Something-Something-V2 datasets.

Attention Pretraining Params K400  SSv2

Space ImageNet-21K 85.9M 76.9 36.6
Joint Space-Time ImageNet-21K 85.9M 77.4 58.5
Divided Space-Time  ImageNet-21K  121.4M 78.0 59.5
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Analysis of Self-Attention Schemes

 As we Increase the spatial resolution, or the video length, our proposed
divided space-time attention leads to dramatic computational savings.
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2. |s space-time attention better than 3D convolutions?



Comparison to 3D CNNs

* We investigate the distinguishing properties of TimeSformer compared to
3D CNNSs.

Model Pretrain K400 Training K400 Inference Params
Time (hours) Acc. TFLOPs

I3D 8x8 RS0 ImageNet-1K 444 71.0 1.11 28.0M
[3D 8x8 R50 ImageNet-1K 1440 73.4 1.11 28.0M
SlowFast R50 ImageNet-1K 448 70.0 1.97 34.6M
SlowFast R50 ImageNet-1K 3840 75.6 1.97 34.6M
SlowFast R50 N/A 6336 76.4 1.97 34.6M
TimeSformer ImageNet-1K 416 75.8 0.59 121.4M

TimeSformer ImageNet-21K 416 78.0 0.59 121.4M




Comparison to 3D CNNs

* We investigate the distinguishing properties of TimeSformer compared to
3D CNNSs.

Model Pretrain K400 Training K400 Inference Params
Time (hours) Acc. TFLOPs

I3D 8x8 RS0 ImageNet-1K 444 71.0 1.11 28.0M
[3D 8x8 R50 ImageNet-1K 1440 73.4 1.11 28.0M
SlowFast R50 ImageNet-1K 448 70.0 1.97 34.6M
SlowFast R50 ImageNet-1K 3840 75.6 1.97 34.6M
SlowFast R50 N/A 6336 76.4 1.97 34.6M
TimeSformer ImageNet-1K 416 75.8 0.59 121.4M

TimeSformer ImageNet-21K 416 78.0 0.59 121.4M




Comparison to 3D CNNs

* We investigate the distinguishing properties of TimeSformer compared to
3D CNNSs.

Model Pretrain K400 Training K400 Inference Params
Time (hours) Acc. TFLOPs
I3D 8x8 R50 ImageNet-1K 444 71.0
[3D 8x8 R50 ImageNet-1K 1440 73.4
SlowFast R50 ImageNet-1K 448 70.0
SlowFast R50 ImageNet-1K 3840 75.6
SlowFast R50 N/A 6336 76.4
TimeSformer ImageNet-1K 416 75.8 0.59 121.4M

TimeSformer ImageNet-21K 416 78.0 0.59 121.4M




Comparison to 3D CNNs

* We investigate the distinguishing properties of TimeSformer compared to

3D CNNs.
Model Pretrain K400 Training K400 Inference Params
Time (hours) Acc. TFLOPs

I3D 8x8 RS0 ImageNet-1K 444 71.0 1.11 28.0M
[3D 8x8 R50 ImageNet-1K 1440 73.4 1.11 28.0M
SlowFast R50 ImageNet-1K 448 70.0 1.97 34.6M
SlowFast R50 ImageNet-1K 3840 75.6 1.97 34.6M
SlowFast R50 N/A 6336 76.4 1.97 34.6M
TimeSformer [ ImageNet-1K 416 75.8 0.59 121.4M
TimeSformer 416 78.0 0.59 121.4M




Comparison to 3D CNNs

* We investigate the distinguishing properties of TimeSformer compared to
3D CNNSs.

Model Pretrain K400 Training K400 Inference Params
Time (hours) Acc. TFLOPs

I3D 8x8 RS0 ImageNet-1K 444 71.0 1.11 28.0M
[3D 8x8 R50 ImageNet-1K 1440 73.4 1.11 28.0M
SlowFast R50 ImageNet-1K 448 70.0 1.97 34.6M
SlowFast R50 ImageNet-1K 3840 75.6 1.97 34.6M
SlowFast R50 N/A 6336 76.4 1.97 34.6M
TimeSformer ImageNet-1K 416 75.8 0.59 121.4M

TimeSformer ImageNet-21K 416 78.0 0.59 121.4M




Comparison to 3D CNNs

* We investigate the distinguishing properties of TimeSformer compared to
3D CNNSs.

Model Pretrain K400 Training K400 Inference Params
Time (hours) Acc. TFLOPs

I3D 8x8 RS0 ImageNet-1K 444 71.0 1.11 28.0M
[3D 8x8 R50 ImageNet-1K 1440 73.4 1.11 28.0M
SlowFast R50 ImageNet-1K 448 70.0 1.97 34.6M
SlowFast R50 ImageNet-1K 1.97 34.6M
SlowFast R50 N/A 6336 76.4 1.97 34.6M
TimeSformer ImageNet-1K 416 75.8 0.59 121.4M

TimeSformer ImageNet-21K 416 78.0 0.59 121.4M




Comparison to 3D CNNs

* We investigate the distinguishing properties of TimeSformer compared to
3D CNNSs.

Model Pretrain K400 Training K400 Inference Params
Time (hours) Acc. TFLOPs

I3D 8x8 R50  ImageNet-1K 1.11 28.0M
[3D 8x8 R50 ImageNet-1K 1440 73.4 1.11 28.0M
SlowFast R50 ImageNet-1K 1.97 34.6M
SlowFast R50 ImageNet-1K 3840 75.6 1.97 34.6M
SlowFast R50 N/A 6336 76.4 1.97 34.6M
TimeSformer ImageNet-1K 0.59 121.4M

TimeSformer ImageNet-21K 416 78.0 0.59 121.4M




3. What is space-time attention particularly useful for?



Increasing the Video Length

* The scalability of our model allows it to operate on longer videos compared to
most 3D CNNSs.
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Long-Term Video Modeling

» We evaluate our model's ability for long-term video modeling.

Key Details:

.................................................................................................

: » 1059 long-term action categories (making breakfast,
cleaning a house, etc). :

: + On average, each video is ~7min long.

» 85K training & 35K testing videos.

PV ) -

__...you just apply a heavy coat let it set ...

00:45

» Performance is evaluated using a standard top-1
: accuracy medtric.

-------------------------------------------------------------------------------------------------

"Learning a Text-Video Embedding by Watching Hundred Million Narrated Video Clips", Miech et al., ICCV 2019



Long-Term Video Modeling

» “Single Clip Coverage” denotes the number of seconds spanned by a single clip.

» “# Test Clips” is the average number of clips needed to cover the entire input
video during inference.

Method # Input Frame Single Clip # Test Top-1
Frames Sampling Rate Coverage Clips Acc

SlowFast R101 8 1/32 8.5s 48 48.2
SlowFast R101 32 1/32 34.1s 12 50.8
SlowFast R101 64 1/32 68.3s 6 51.5
SlowFast R101 96 1/32 102.4s 4 51.2
TimeSformer 8 1/32 8.55 48 56.0
TimeSformer 32 1/32 34.1s 12 59.2
TimeS{former 64 1/32 68.3s 6 60.2

TimeSformer 06 1/32 102.4s 4 62.1
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4. |s space-time attention all you need for video understanding?



» Compared to modern 3D CNNs, TimeSformer has a larger learning
capacity, and a comparable or even lower inference cost.
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) Compared to modern 3D CNNs, TimeSformer has a larger learning

capacity, and a comparable or even lower inference cost.

= Our method does not require a very long optimization schedule, and thus,

it can be trained efficiently on video data.

) TimeSformer can handle much longer videos, which makes it highly

suitable for long-term video modeling.

Due to a large number of parameters, TimeSformer requires image-level
pretraining.

Improvements are needed for learning more effective features on
temporally heavy datasets (e.g. SSv2).



Discussion Questions

* |s space-time attention all you need for video understanding?



Discussion Questions

* |s space-time attention all you need for video understanding?

* Can TimeSformer recognize actions that involve fast-moving objects?



