Is Space-Time Attention All You Need for Video Understanding?

ICML 2021

Gedas Bertasius, Heng Wang, Lorenzo Torresani

Video Classification

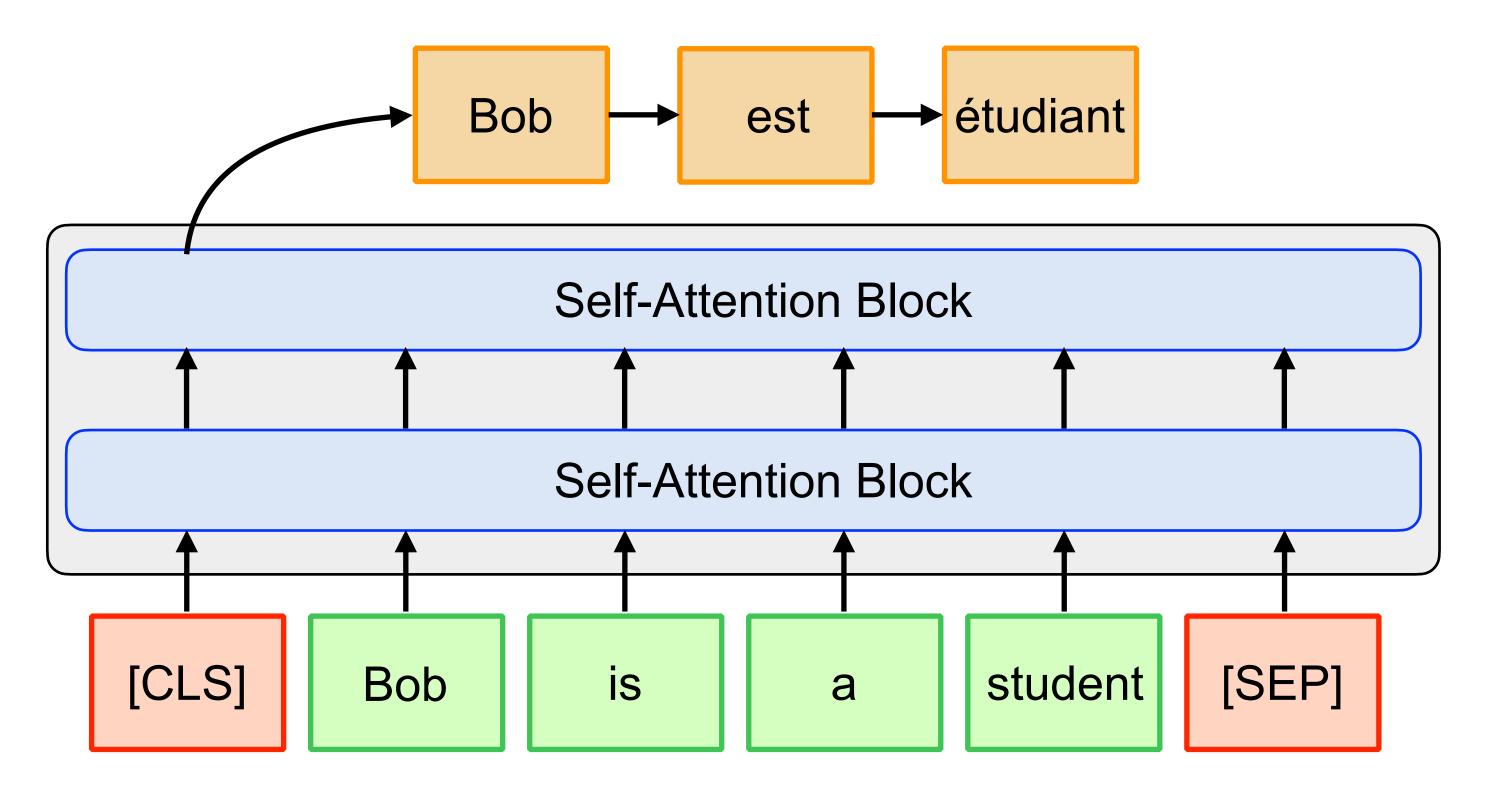
• Given a video, we want to classify it into one of the action categories.

Cartwheeling

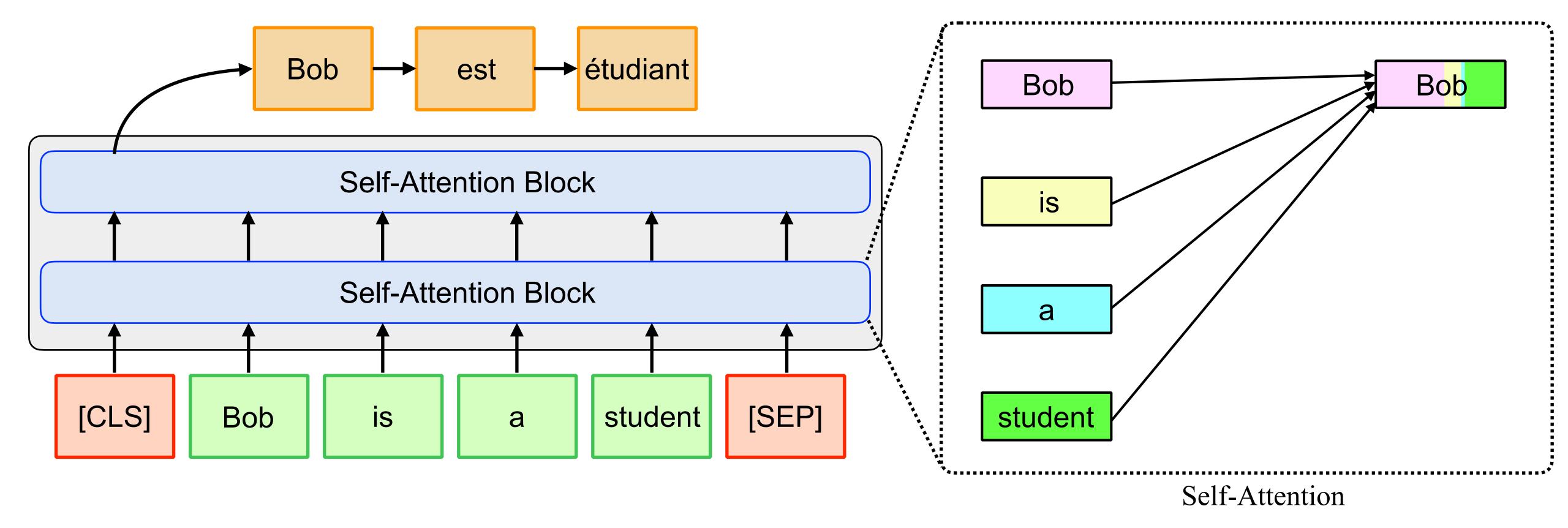
Braiding Hair

Opening a Fridge

Self-attention enables capturing long-range dependencies among words.

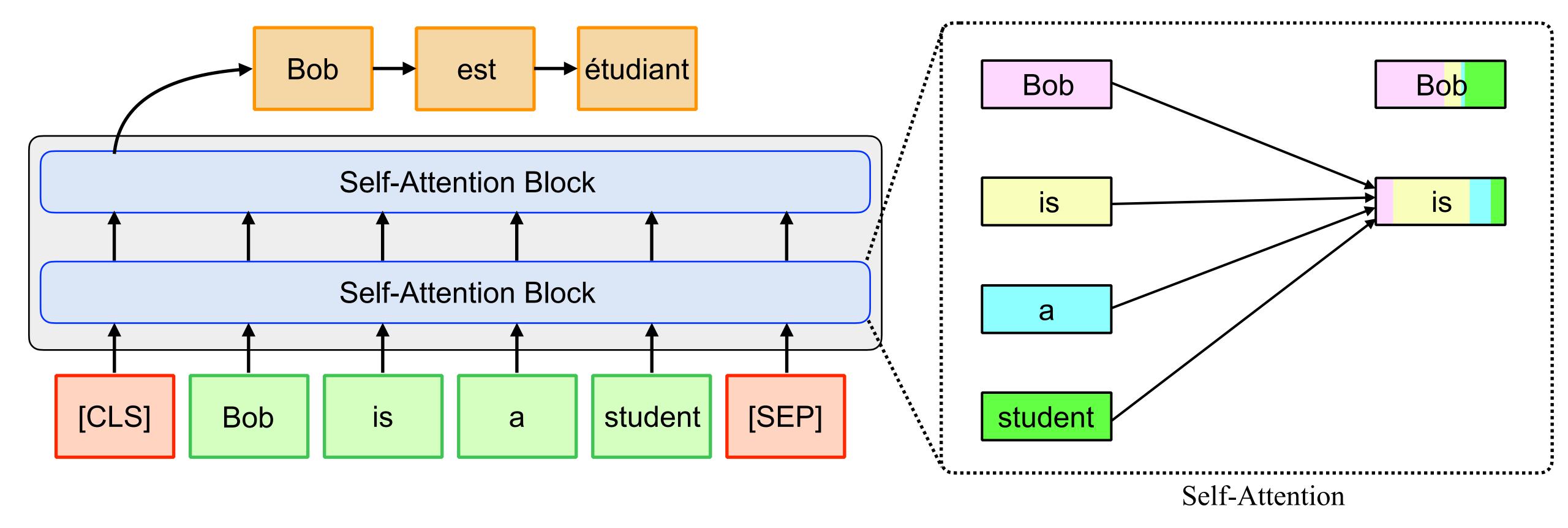


Self-attention enables capturing long-range dependencies among words.



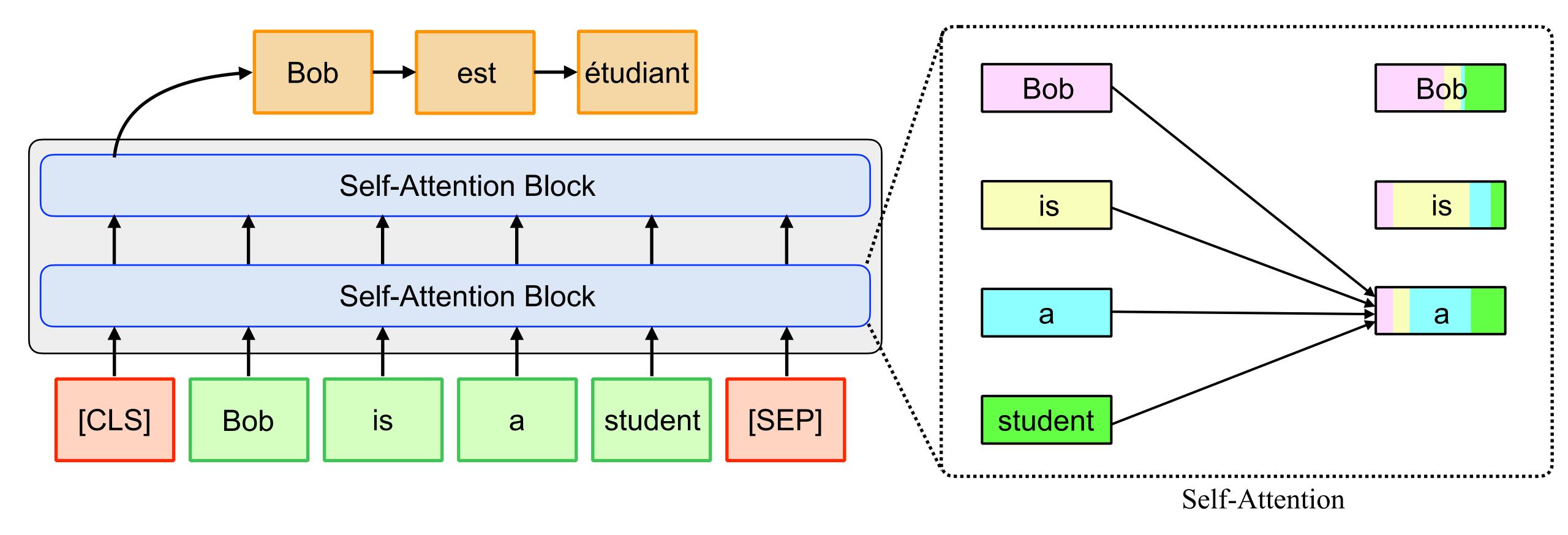
"Attention is All You Need", Vaswani et al., NIPS, 2017

Self-attention enables capturing long-range dependencies among words.



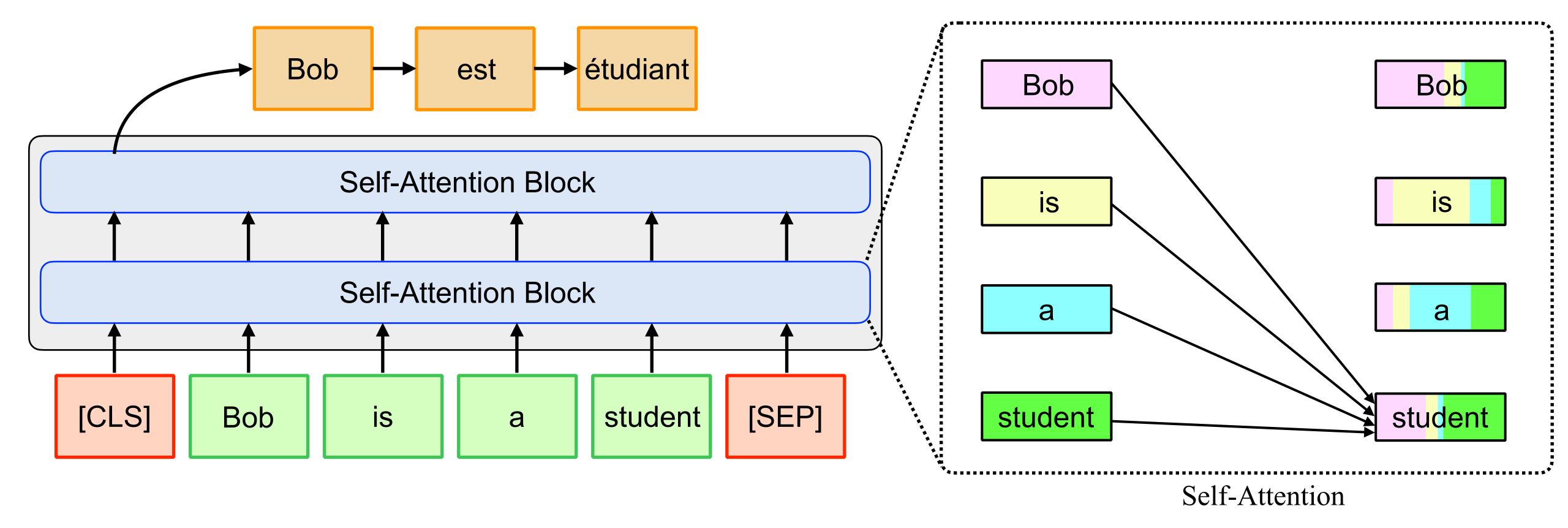
"Attention is All You Need", Vaswani et al., NIPS, 2017

Self-attention enables capturing long-range dependencies among words.

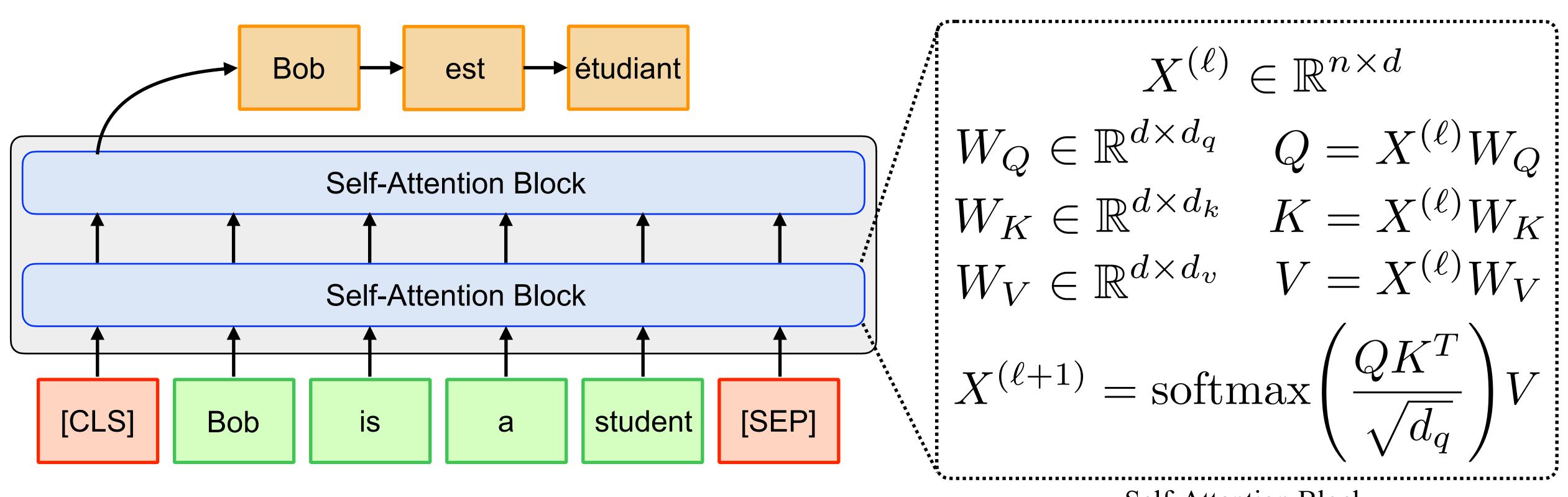


"Attention is All You Need", Vaswani et al., NIPS, 2017

Self-attention enables capturing long-range dependencies among words.

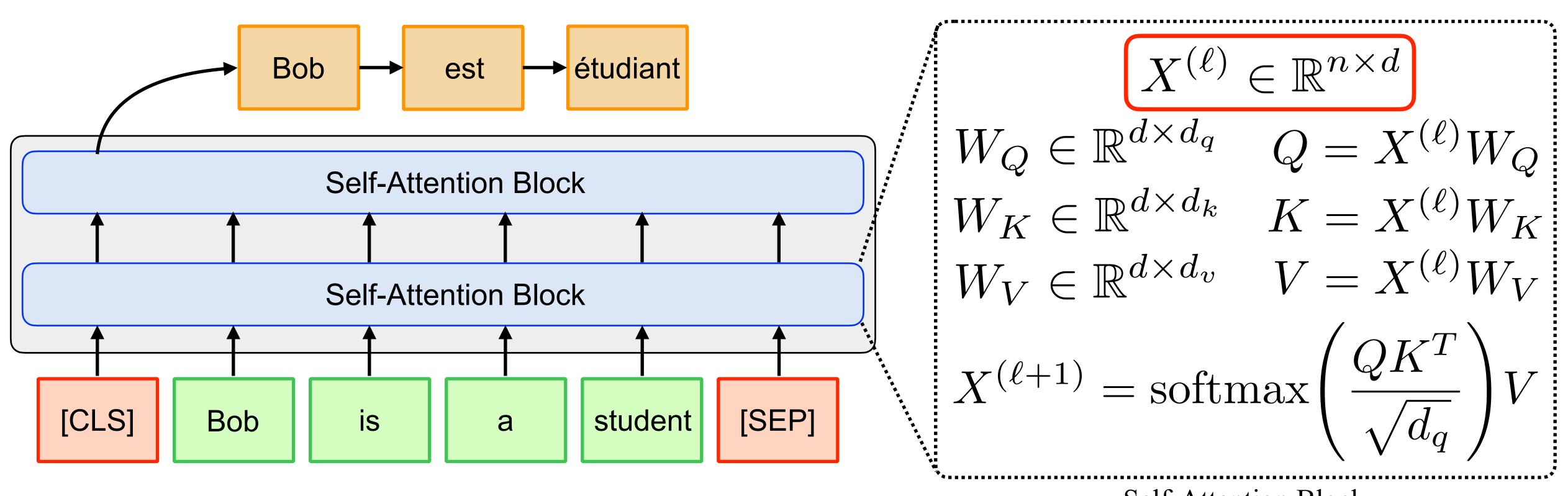


Self-attention enables capturing long-range dependencies among words.



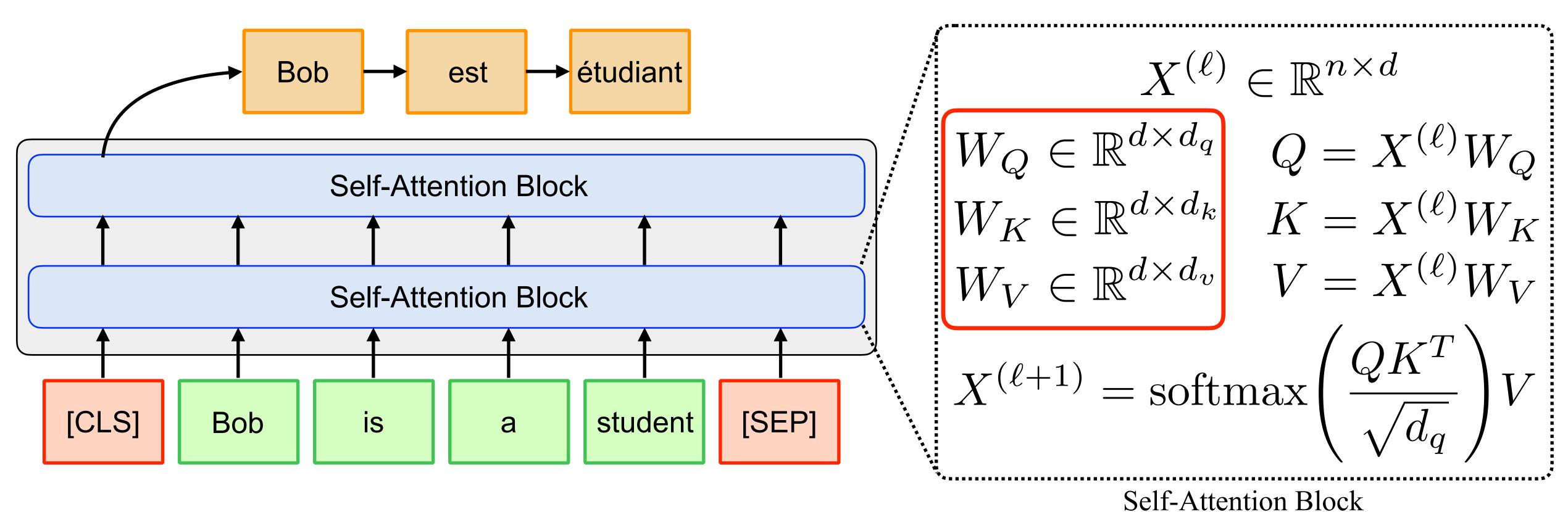
Self-Attention Block

Self-attention enables capturing long-range dependencies among words.

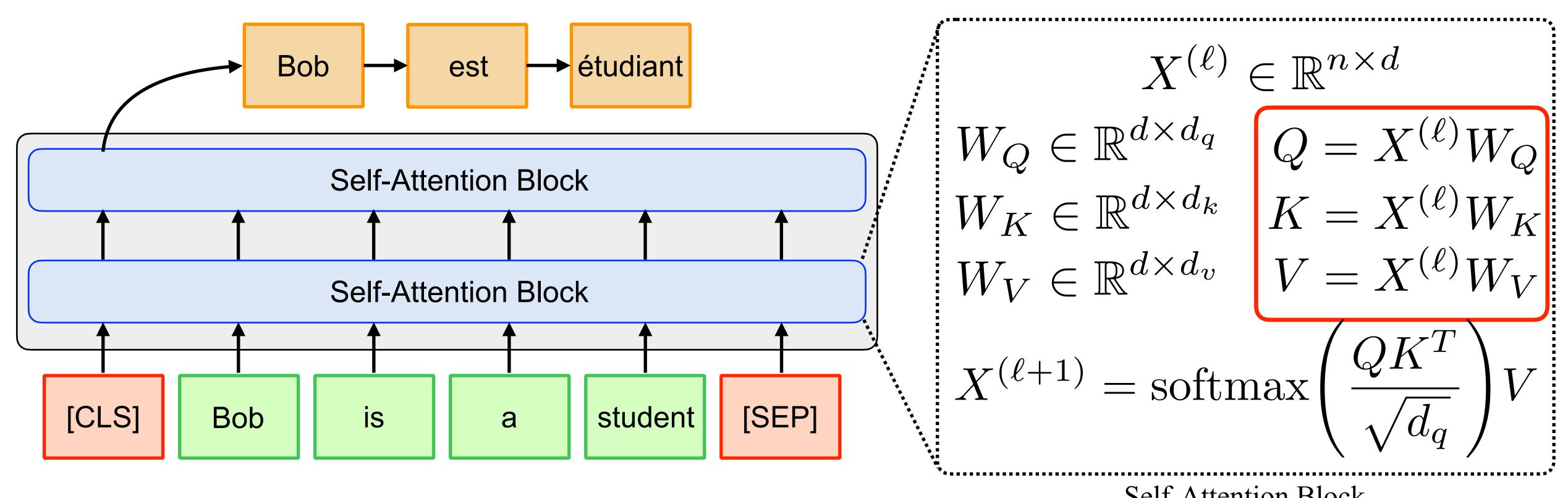


Self-Attention Block

Self-attention enables capturing long-range dependencies among words.

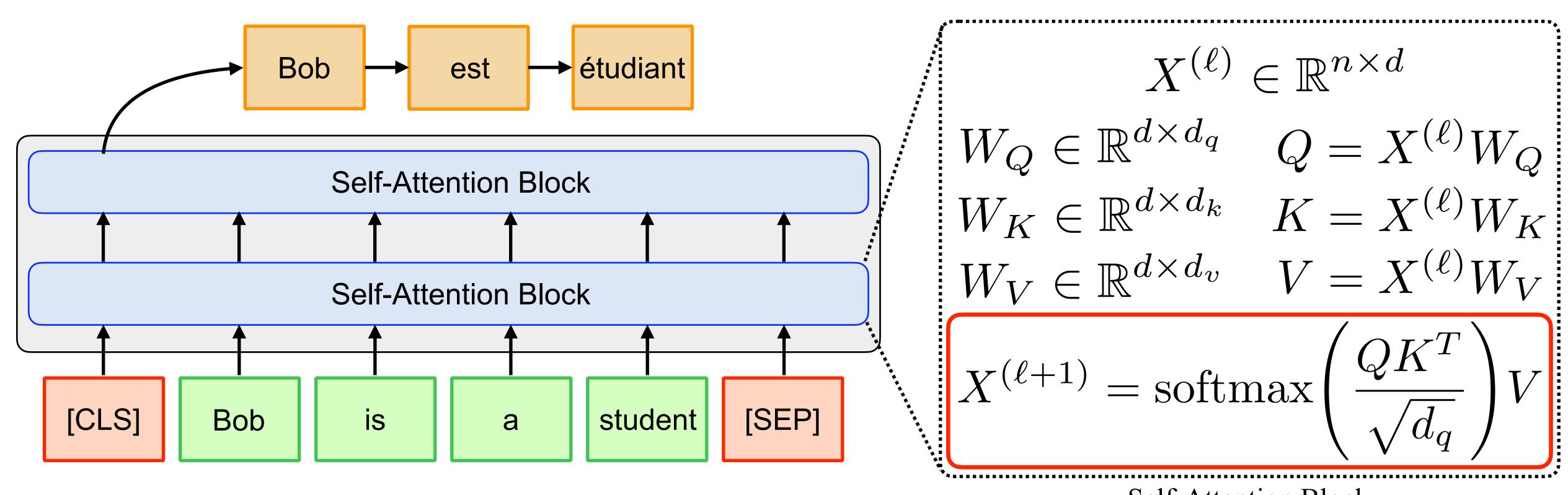


Self-attention enables capturing long-range dependencies among words.



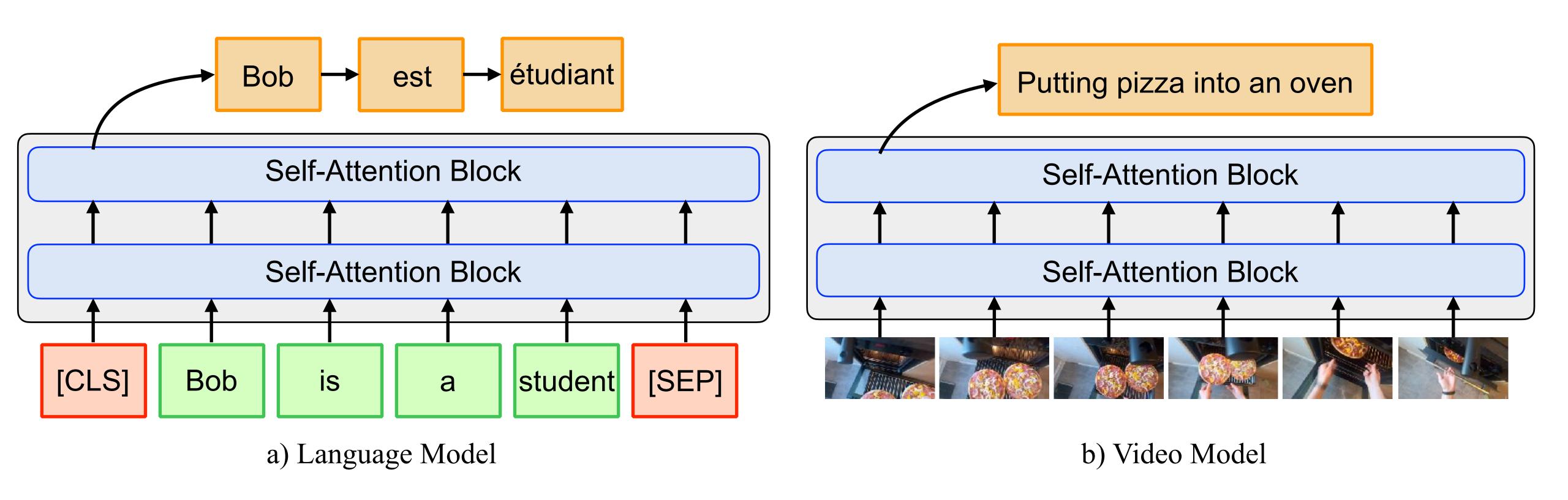
Self-Attention Block

Self-attention enables capturing long-range dependencies among words.



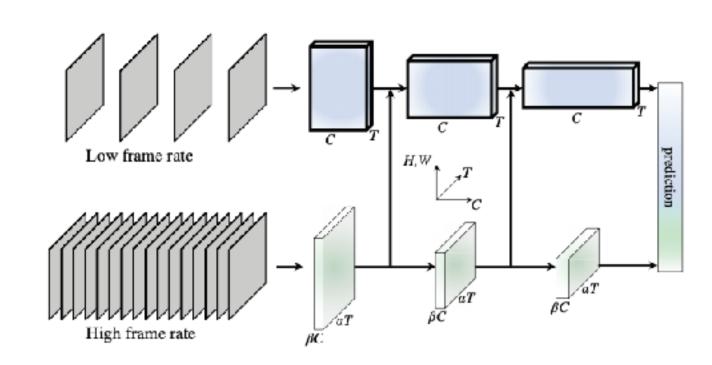
Self-Attention Block

Self-attention enables capturing long-range dependencies among words.

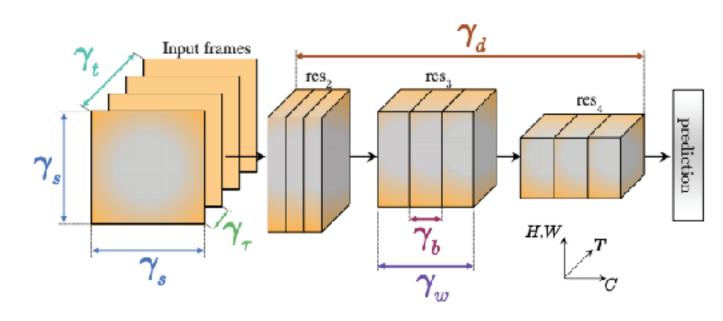


"Attention is All You Need", Vaswani et al., NIPS 2017

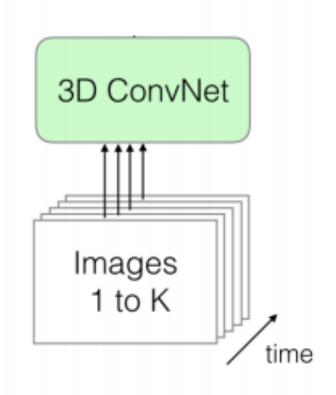
State-of-the-Art in Video Classification



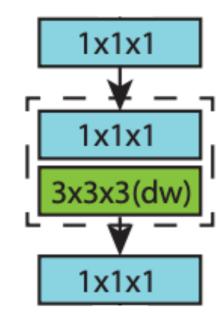
SlowFast Networks [Feichtenhofer et al. 2019]



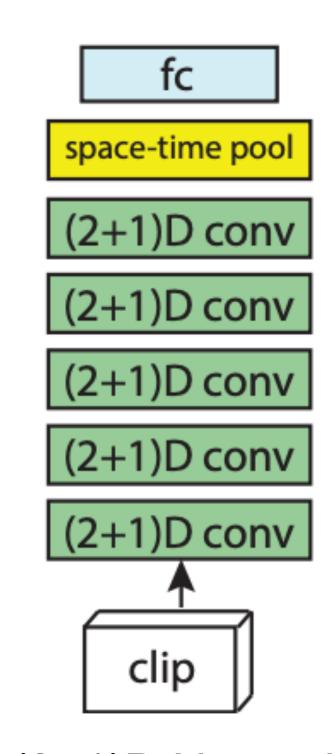
Expanded 3D Networks [Feichtenhofer 2020]



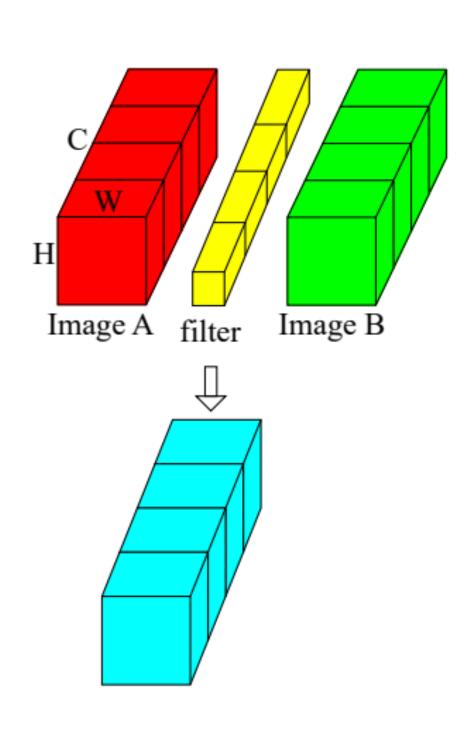
Inflated 3D Networks [Carreira et al. 2018]



Channel Separated Networks [Tran et al. 2019]



R(2+1)D Networks [Tran et al. 2018]



Correlation Networks [Wang et al. 2020]

3D Convolutions vs Self-Attention

3D Convolutions:

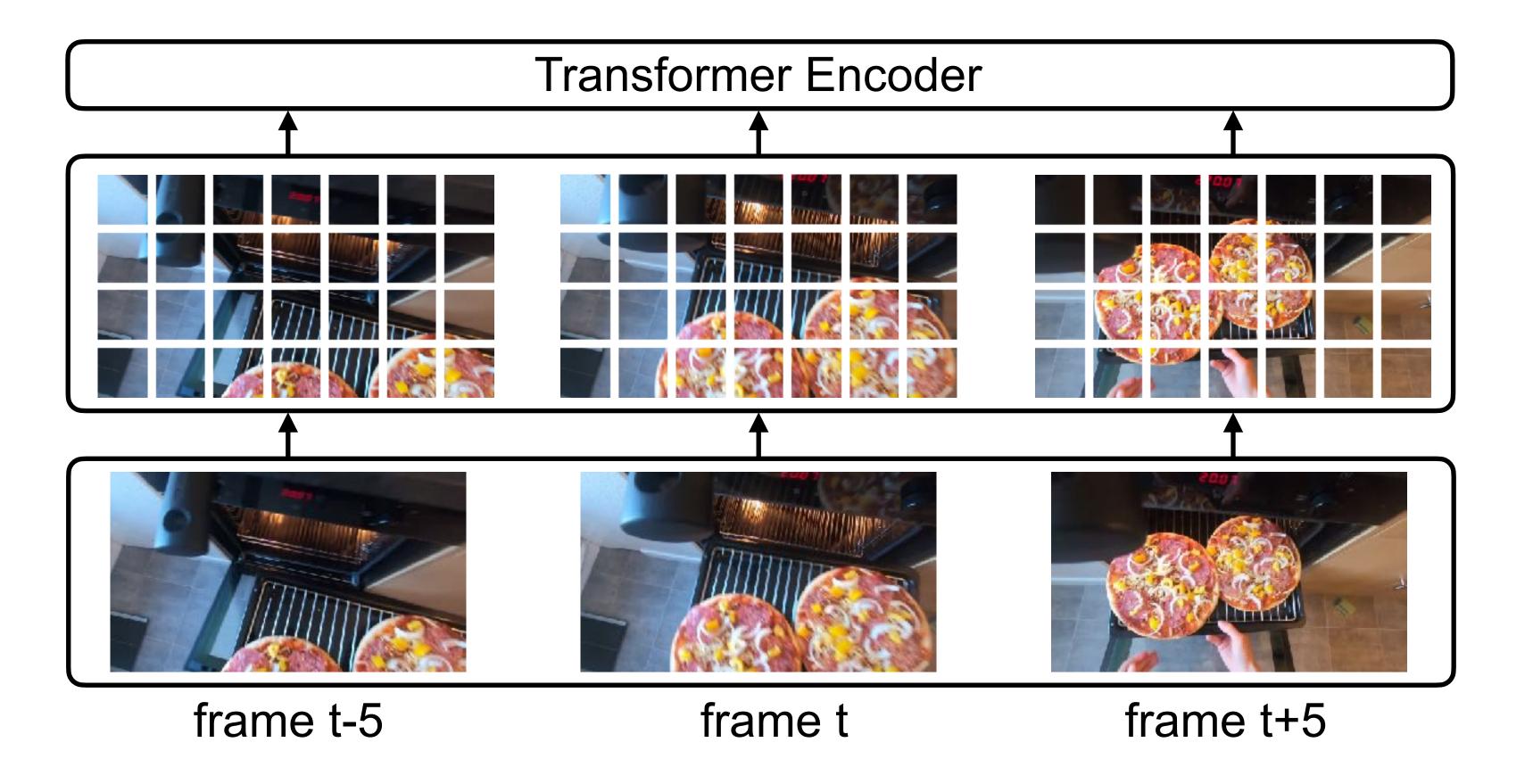
- Strong inductive bias.
- Captures short-range patterns.
- Difficult to scale.

Self-Attention:

- Fewer inductive biases.
- Can capture both short-range and long-range dependencies.
- Easier to scale model capacity.

Video Decomposition

We decompose the video into a sequence of frame-level patches.

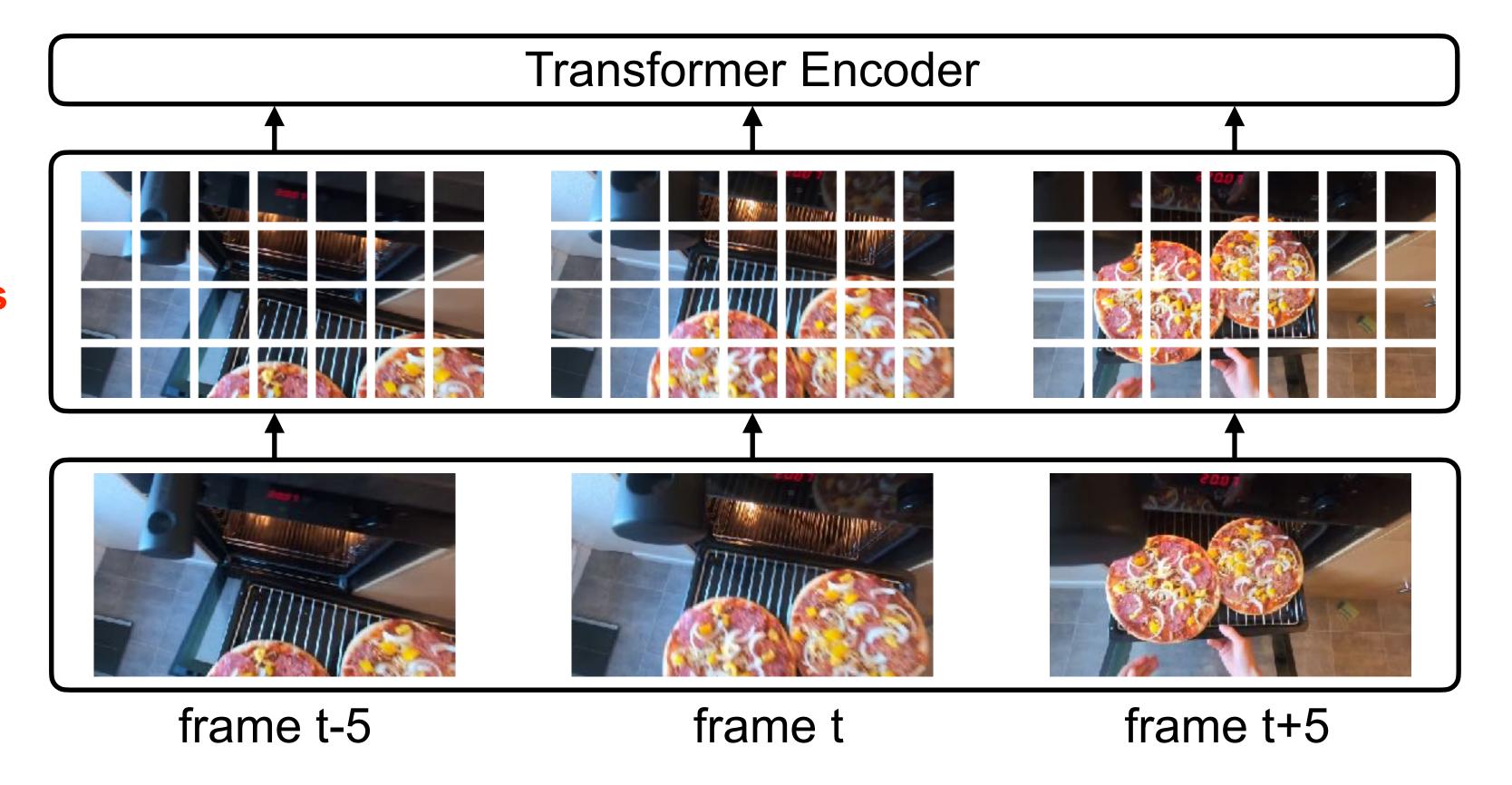


[&]quot;An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale", Dosovitskiy et al., ICLR 2021

Video Decomposition

We decompose the video into a sequence of frame-level patches.

Computing similarity for all pairs of patches is costly.

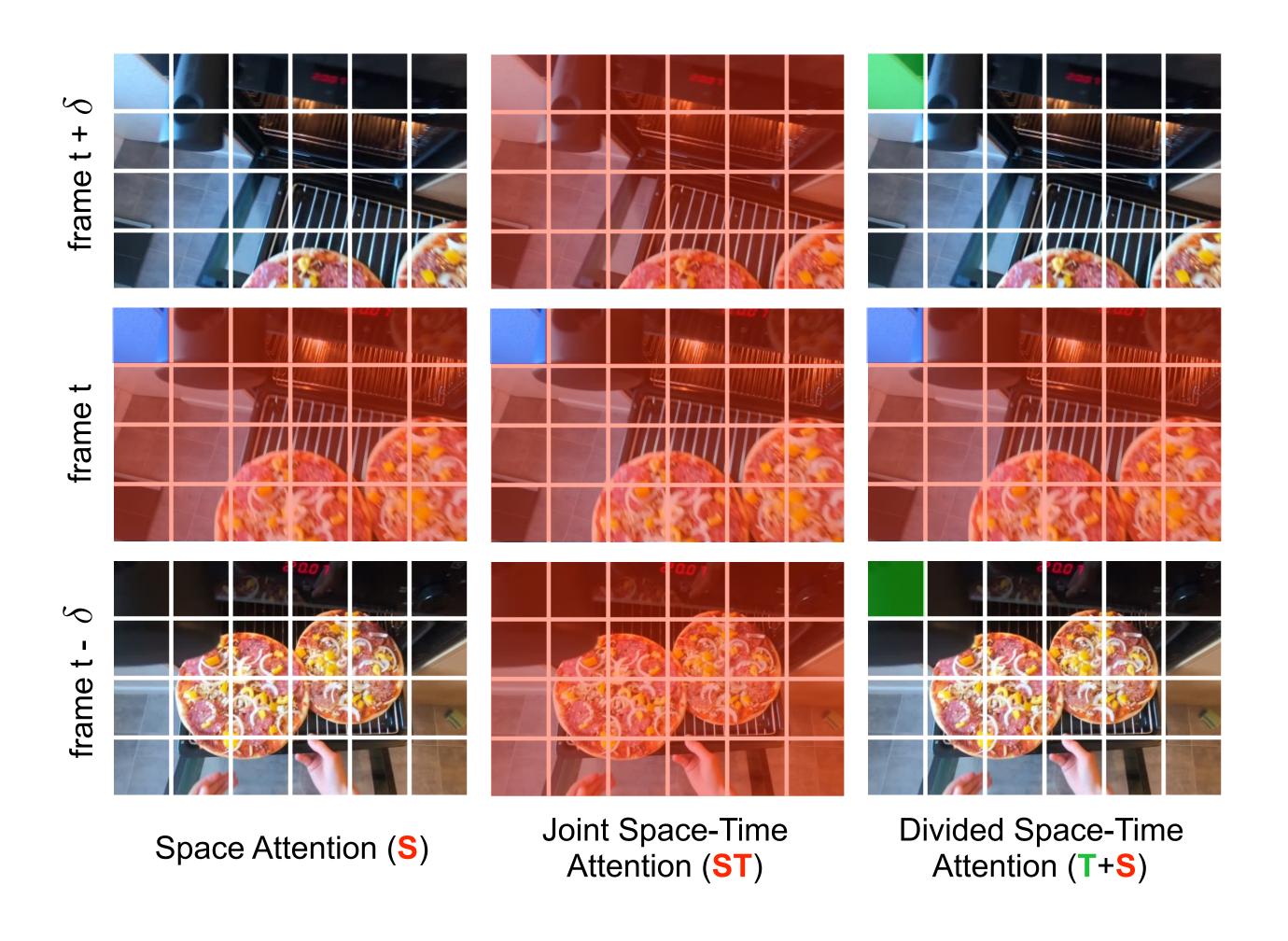


"An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale", Dosovitskiy et al., ICLR 2021

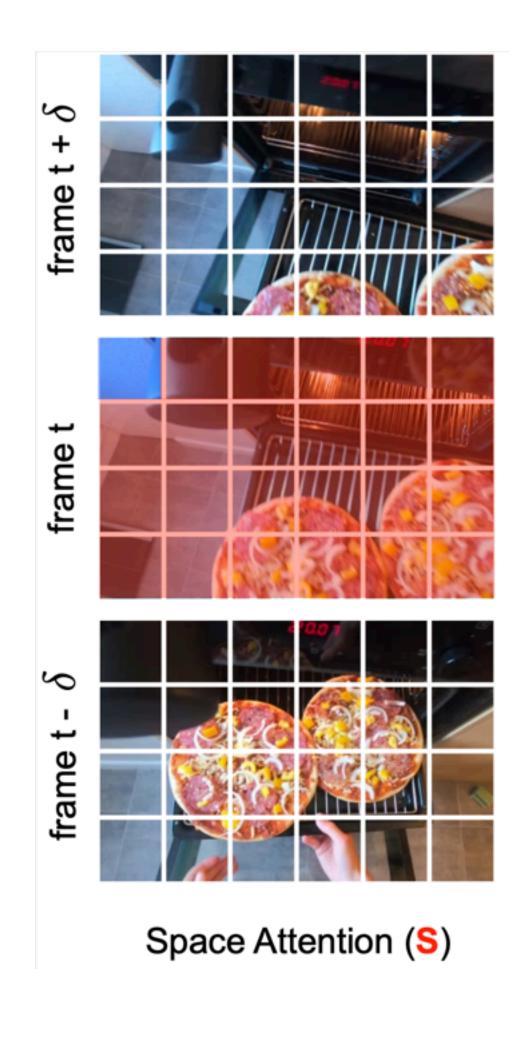
1. What is the right	space-time sel	f-attention pattern?

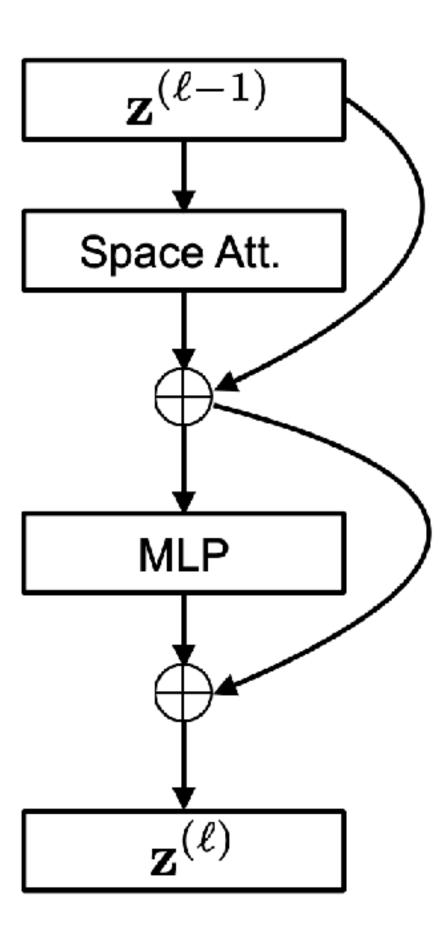
Space-Time Self-Attention

• We investigate several space-time self-attention schemes.

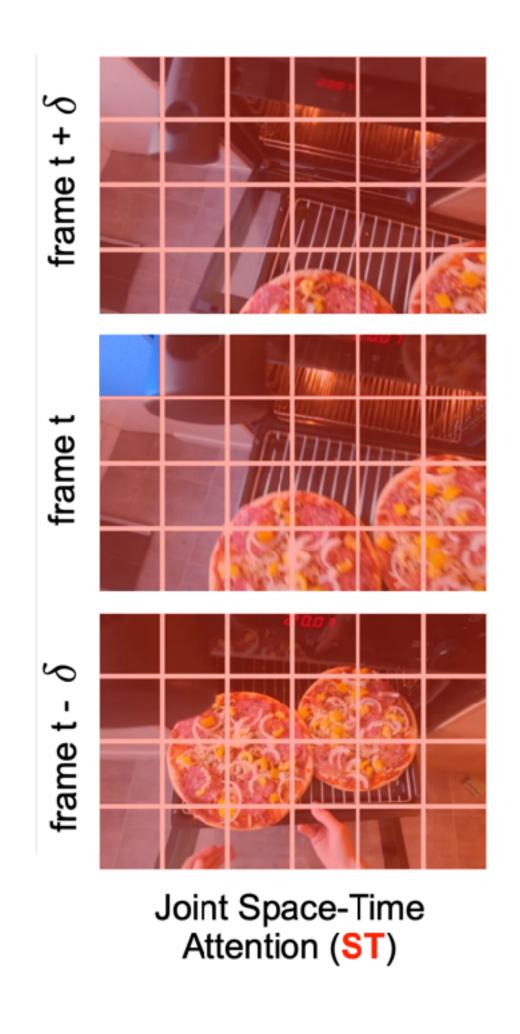


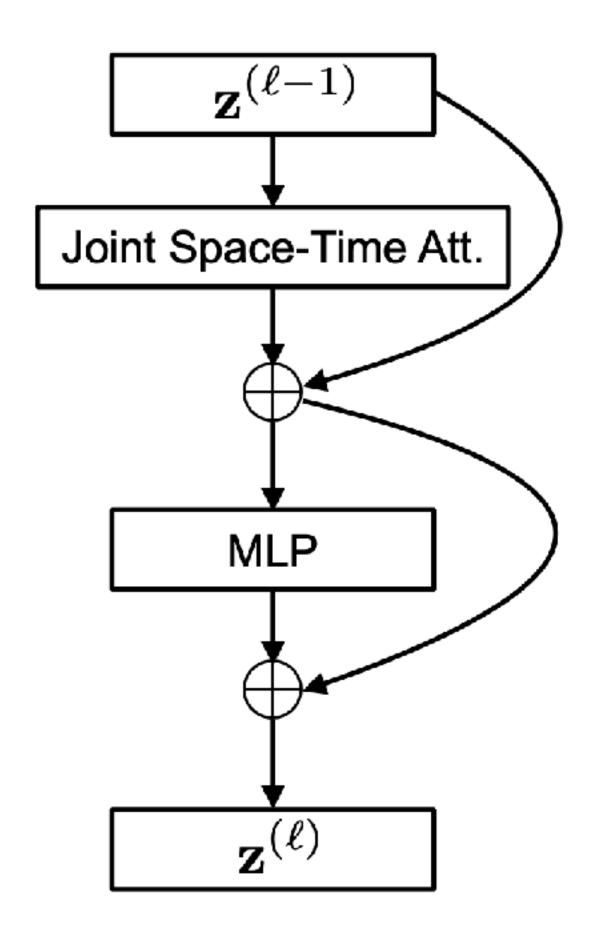
Spatial Self-Attention



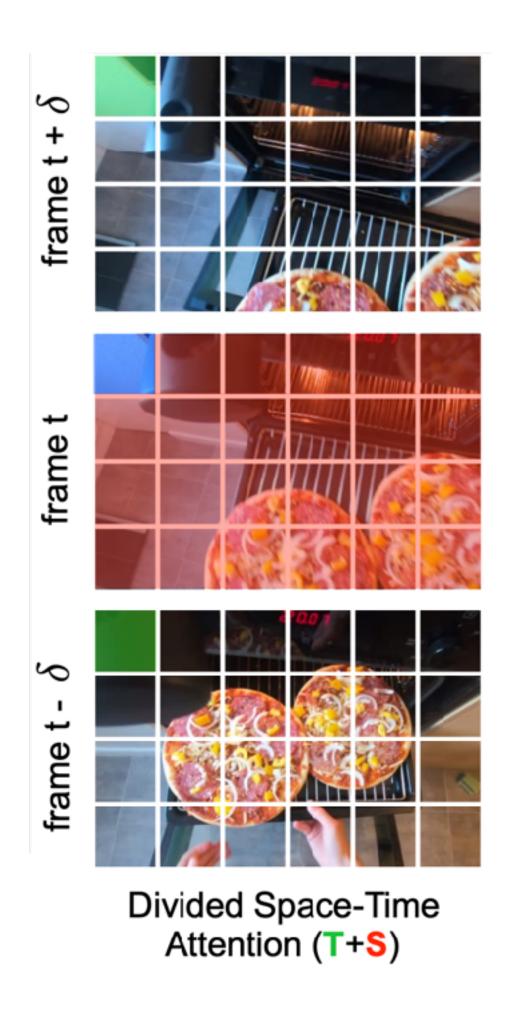


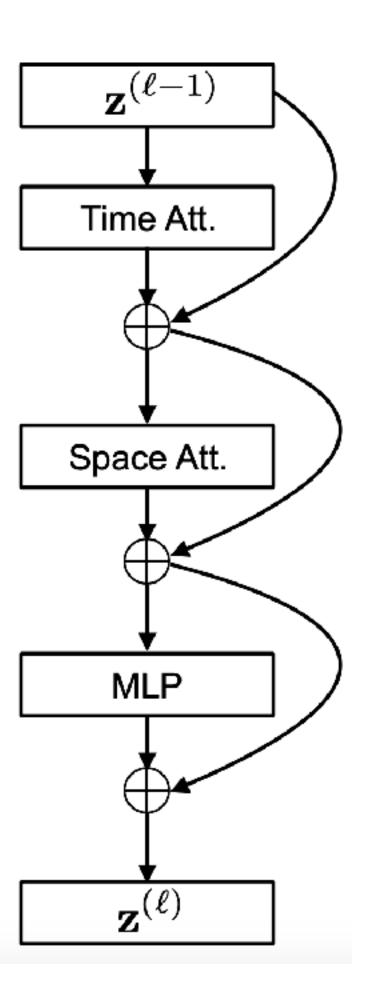
Joint Space-Time Self-Attention





Divided Space-Time Self-Attention





Analysis of Self-Attention Schemes

 Each space-time self-attention scheme is evaluated on Kinetics-400, and Something-Something-V2 datasets.

Attention	Pretraining	Params	K400	SSv2
Space	ImageNet-21K	85.9M	76.9	36.6
Joint Space-Time	ImageNet-21K	85.9M	77.4	58.5
Divided Space-Time	ImageNet-21K	121.4M	78.0	59.5

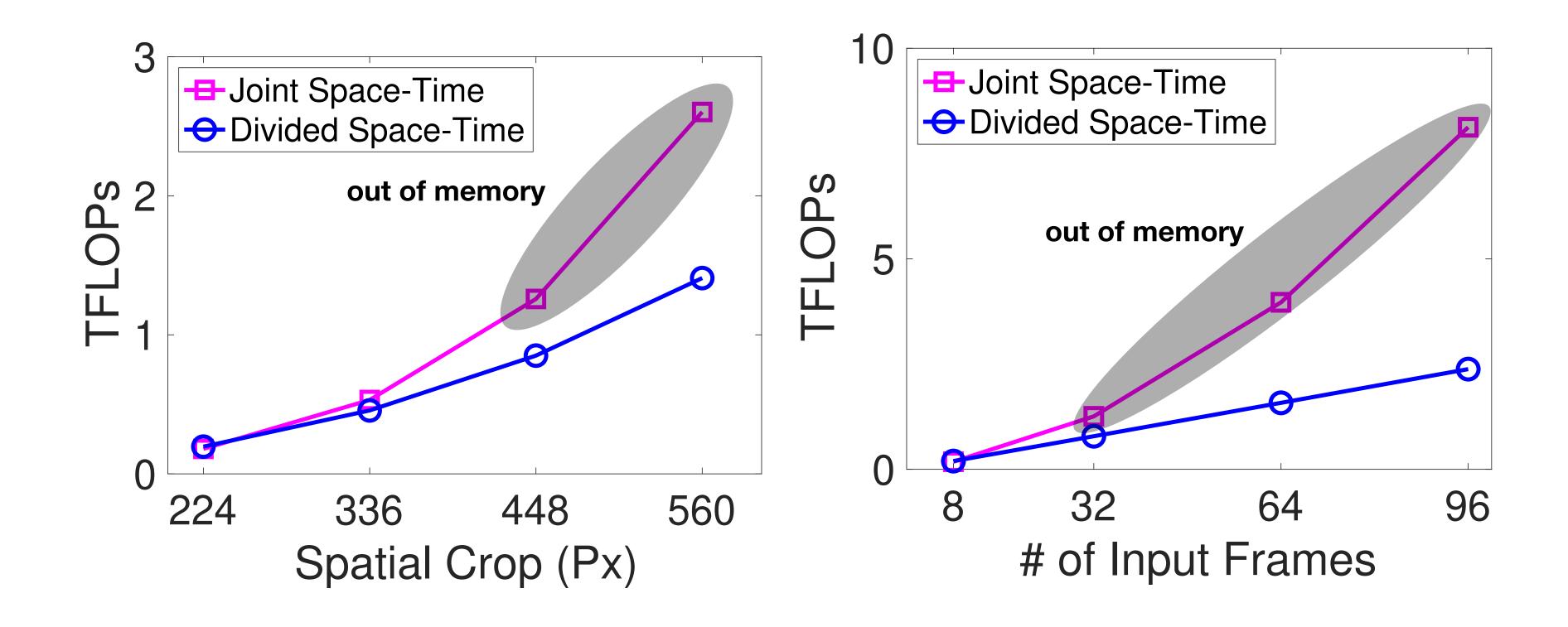
Analysis of Self-Attention Schemes

 Each space-time self-attention scheme is evaluated on Kinetics-400, and Something-Something-V2 datasets.

Attention	Pretraining	Params	K400	SSv2
Space	ImageNet-21K	85.9M	76.9	36.6
Joint Space-Time	ImageNet-21K	85.9M	77.4	58.5
Divided Space-Time	ImageNet-21K	121.4M	78.0	59.5

Analysis of Self-Attention Schemes

• As we increase the spatial resolution, or the video length, our proposed divided space-time attention leads to dramatic computational savings.



2.	Is space-time	attention	better than	3D convolution	s?

Model	Pretrain	K400 Training	K400	Inference	Params
		Time (hours)	Acc.	TFLOPs	
I3D 8x8 R50	ImageNet-1K	444	71.0	1.11	28.0M
I3D 8x8 R50	ImageNet-1K	1440	73.4	1.11	28.0M
SlowFast R50	ImageNet-1K	448	70.0	1.97	34.6M
SlowFast R50	ImageNet-1K	3840	75.6	1.97	34.6M
SlowFast R50	N/A	6336	76.4	1.97	34.6M
TimeSformer	ImageNet-1K	416	75.8	0.59	121.4M
TimeSformer	ImageNet-21K	416	78.0	0.59	121.4M

Model	Pretrain	K400 Training	K400	Inference	Params
		Time (hours)	Acc.	TFLOPs	
I3D 8x8 R50	ImageNet-1K	444	71.0	1.11	28.0M
I3D 8x8 R50	ImageNet-1K	1440	73.4	1.11	28.0M
SlowFast R50	ImageNet-1K	448	70.0	1.97	34.6M
SlowFast R50	ImageNet-1K	3840	75.6	1.97	34.6M
SlowFast R50	N/A	6336	76.4	1.97	34.6M
TimeSformer	ImageNet-1K	416	75.8	0.59	121.4M
TimeSformer	ImageNet-21K	416	78.0	0.59	121.4M

Model	Pretrain	K400 Training	K400	Inference	Params
		Time (hours)	Acc.	TFLOPs	
I3D 8x8 R50	ImageNet-1K	444	71.0	1.11	28.0M
I3D 8x8 R50	ImageNet-1K	1440	73.4	1.11	28.0M
SlowFast R50	ImageNet-1K	448	70.0	1.97	34.6M
SlowFast R50	ImageNet-1K	3840	75.6	1.97	34.6M
SlowFast R50	N/A	6336	76.4	1.97	34.6M
TimeSformer	ImageNet-1K	416	75.8	0.59	121.4M
TimeSformer	ImageNet-21K	416	78.0	0.59	121.4M

Model	Pretrain	K400 Training	K400	Inference	Params
		Time (hours)	Acc.	TFLOPs	
I3D 8x8 R50	ImageNet-1K	444	71.0	1.11	28.0M
I3D 8x8 R50	ImageNet-1K	1440	73.4	1.11	28.0M
SlowFast R50	ImageNet-1K	448	70.0	1.97	34.6M
SlowFast R50	ImageNet-1K	3840	75.6	1.97	34.6M
SlowFast R50	N/A	6336	76.4	1.97	34.6M
TimeSformer	ImageNet-1K	416	75.8	0.59	121.4M
TimeSformer	ImageNet-21K	416	78.0	0.59	121.4M

Model	Pretrain	K400 Training	K400	Inference	Params
		Time (hours)	Acc.	TFLOPs	
I3D 8x8 R50	ImageNet-1K	444	71.0	1.11	28.0M
I3D 8x8 R50	ImageNet-1K	1440	73.4	1.11	28.0M
SlowFast R50	ImageNet-1K	448	70.0	1.97	34.6M
SlowFast R50	ImageNet-1K	3840	75.6	1.97	34.6M
SlowFast R50	N/A	6336	76.4	1.97	34.6M
TimeSformer	ImageNet-1K	416	75.8	0.59	121.4M
TimeSformer	ImageNet-21K	416	78.0	0.59	121.4M

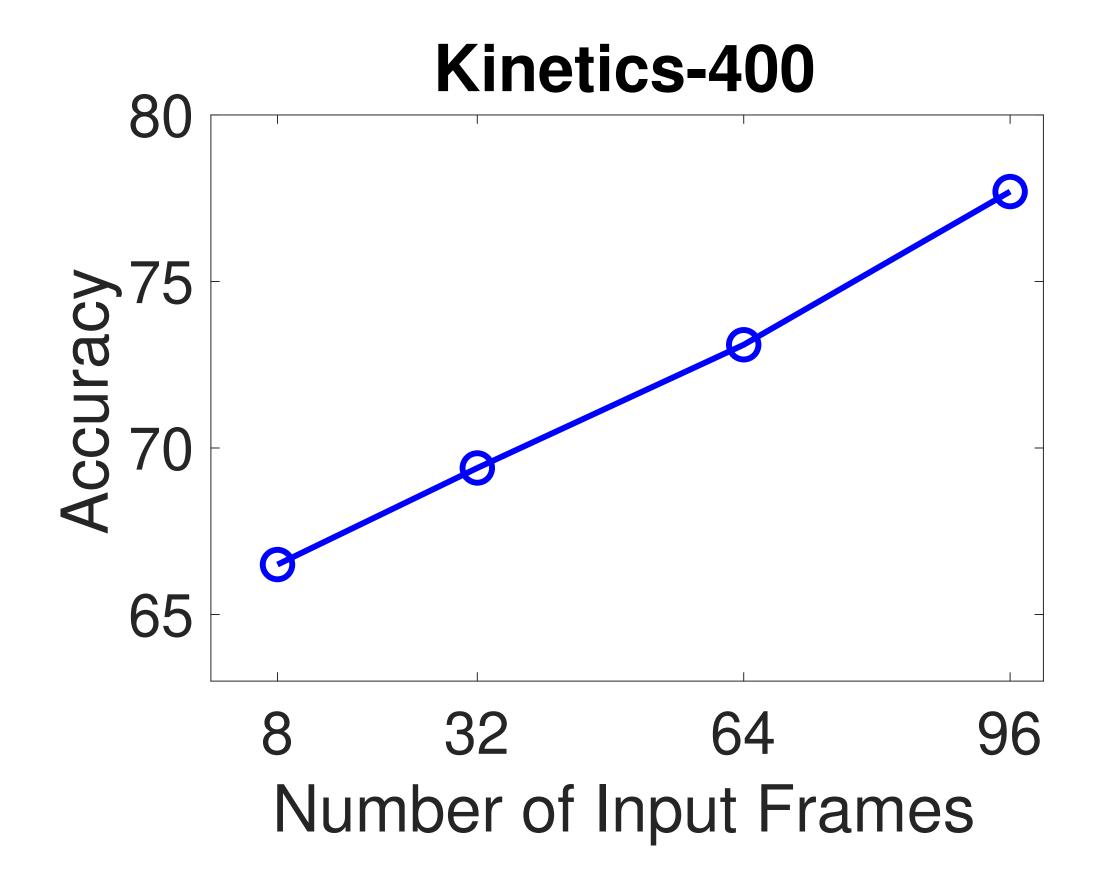
Model	Pretrain	K400 Training	K400	Inference	Params
		Time (hours)	Acc.	TFLOPs	
I3D 8x8 R50	ImageNet-1K	444	71.0	1.11	28.0M
I3D 8x8 R50	ImageNet-1K	1440	73.4	1.11	28.0M
SlowFast R50	ImageNet-1K	448	70.0	1.97	34.6M
SlowFast R50	ImageNet-1K	3840	75.6	1.97	34.6M
SlowFast R50	N/A	6336	76.4	1.97	34.6M
TimeSformer	ImageNet-1K	416	75.8	0.59	121.4M
TimeSformer	ImageNet-21K	416	78.0	0.59	121.4M

Model	Pretrain	K400 Training	K400	Inference	Params
		Time (hours)	Acc.	TFLOPs	
I3D 8x8 R50	ImageNet-1K	444	71.0	1.11	28.0M
I3D 8x8 R50	ImageNet-1K	1440	73.4	1.11	28.0M
SlowFast R50	ImageNet-1K	448	70.0	1.97	34.6M
SlowFast R50	ImageNet-1K	3840	75.6	1.97	34.6M
SlowFast R50	N/A	6336	76.4	1.97	34.6M
TimeSformer	ImageNet-1K	416	75.8	0.59	121.4M
TimeSformer	ImageNet-21K	416	78.0	0.59	121.4M

3.	What is	s space-	time atte	ention p	articularly	y useful fo	r?

Increasing the Video Length

 The scalability of our model allows it to operate on longer videos compared to most 3D CNNs.



We evaluate our model's ability for long-term video modeling.

Key Details:

- 1059 long-term action categories (making breakfast, cleaning a house, etc).
- On average, each video is ~7min long.
- 85K training & 35K testing videos.
- Performance is evaluated using a standard top-1 accuracy metric.

"Learning a Text-Video Embedding by Watching Hundred Million Narrated Video Clips", Miech et al., ICCV 2019

- "Single Clip Coverage" denotes the number of seconds spanned by a single clip.
- "# Test Clips" is the average number of clips needed to cover the entire input video during inference.

Method	# Input	Frame	Single Clip	# Test	Top-1
	Frames	Sampling Rate	Coverage	Clips	Acc
SlowFast R101	8	1/32	8.5s	48	48.2
SlowFast R101	32	1/32	34.1s	12	50.8
SlowFast R101	64	1/32	68.3s	6	51.5
SlowFast R101	96	1/32	102.4s	4	51.2
TimeSformer	8	1/32	8.5s	48	56.0
TimeSformer	32	1/32	34.1s	12	59.2
TimeSformer	64	1/32	68.3s	6	60.2
TimeSformer	96	1/32	102.4s	4	62.1

- "Single Clip Coverage" denotes the number of seconds spanned by a single clip.
- "# Test Clips" is the average number of clips needed to cover the entire input video during inference.

Method	# Input	Frame	Single Clip	# Test	Top-1
	Frames	Sampling Rate	Coverage	Clips	Acc
SlowFast R101	8	1/32	8.5s	48	48.2
SlowFast R101	32	1/32	34.1s	12	50.8
SlowFast R101	64	1/32	68.3s	6	51.5
SlowFast R101	96	1/32	102.4s	4	51.2
TimeSformer	8	1/32	8.5s	48	56.0
TimeSformer	32	1/32	34.1s	12	59.2
TimeSformer	64	1/32	68.3s	6	60.2
TimeSformer	96	1/32	102.4s	4	62.1

- "Single Clip Coverage" denotes the number of seconds spanned by a single clip.
- "# Test Clips" is the average number of clips needed to cover the entire input video during inference.

Method	# Input	Frame	Single Clip	# Test	Top-1
	Frames	Sampling Rate	Coverage	Clips	Acc
SlowFast R101	8	1/32	8.5s	48	48.2
SlowFast R101	32	1/32	34.1s	12	50.8
SlowFast R101	64	1/32	68.3s	6	51.5
SlowFast R101	96	1/32	102.4s	4	51.2
TimeSformer	8	1/32	8.5s	48	56.0
TimeSformer	32	1/32	34.1s	12	59.2
TimeSformer	64	1/32	68.3s	6	60.2
TimeSformer	96	1/32	102.4s	4	62.1

4. Is space-time attention all you need for video understanding?

20

Compared to modern 3D CNNs, TimeSformer has a larger learning capacity, and a comparable or even lower inference cost.

- Compared to modern 3D CNNs, TimeSformer has a larger learning capacity, and a comparable or even lower inference cost.
- Our method does not require a very long optimization schedule, and thus, it can be trained efficiently on video data.

- Compared to modern 3D CNNs, TimeSformer has a larger learning capacity, and a comparable or even lower inference cost.
- Our method does not require a very long optimization schedule, and thus, it can be trained efficiently on video data.
- TimeSformer can handle much longer videos, which makes it highly suitable for long-term video modeling.

- Compared to modern 3D CNNs, TimeSformer has a larger learning capacity, and a comparable or even lower inference cost.
- Our method does not require a very long optimization schedule, and thus, it can be trained efficiently on video data.
- TimeSformer can handle much longer videos, which makes it highly suitable for long-term video modeling.
- Due to a large number of parameters, TimeSformer requires image-level pretraining.

- Compared to modern 3D CNNs, TimeSformer has a larger learning capacity, and a comparable or even lower inference cost.
- Our method does not require a very long optimization schedule, and thus, it can be trained efficiently on video data.
- TimeSformer can handle much longer videos, which makes it highly suitable for long-term video modeling.
- Due to a large number of parameters, TimeSformer requires image-level pretraining.
- Improvements are needed for learning more effective features on temporally heavy datasets (e.g. SSv2).

Discussion Questions

Is space-time attention all you need for video understanding?

Discussion Questions

- Is space-time attention all you need for video understanding?
- Can TimeSformer recognize actions that involve fast-moving objects?