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Problem Overview

e Given two adjacent frames we want to predict an
optical flow field for those two frames.
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Motivation

e Optical flow can be useful for many different applications.
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Prior Work

e Optimization based strategies to obtain optical flow.

 CNN-based approaches that don’t involve any end-to-
end learning.

E(v) = f (VITu= L) A (Vo 2+ [V [?) d2z.
2

Determining optical flow [Artificial Intelligence 1981]

Eputa(u,v) = /‘ 3 @ (| I(x +w) = I + | VI[x + w) = VI(x)?) dx

DeepFlow: Large displacement
optical flow with deep matching
[ICCV 2013]

High accuracy optical flow estimation based
on a theory for warping [ECCV 2004]



Challenges

 Can CNNs learn to find correspondences between
pixels in two images?

e The existing optical flow datasets are too small for
effective CNN training.

convolutional
network




FlowNetS (Simple Network)

e Stack both input images together and feed them
through a generic CNN network.

e Can a model with such a generic architecture learn to
solve an optical flow task?

FlowNetSimpla




FlowNetC (Correlation Network)

e Create two separate, yet identical processing streams
for the two images.

 Combine them at a later stage via a correlation layer.

FlowNetCorr




FlowNetC (Correlation Network)

e Create two separate, yet identical processing streams
for the two images.

 Combine them at a later stage via a correlation layer.

FlowNetCorr




FlowNetC (Correlation Network)

e Create two separate, yet identical processing streams
for the two images.

 Combine them at a later stage via a correlation layer.

FlowNetCorr




Correlation Layer

e Given two feature maps 1 and 2, the network
compares each patch from 1 with each patch from {2
(using square patches of size K=2k+1)

e Correlation operator is identical to convolution, but
iInstead of convolving data with a filter, it convolves data
with other data.

c(x1,%x2) = Y (fi(x1+0), f2(x2 + 0))
oc|[—k,k]|x[—k,k]
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Correlation Layer

e Given two feature maps 1 and 2, the network
compares each patch from 1 with each patch from {2
(using square patches of size K=2k+1)

e Correlation operator is identical to convolution, but
iInstead of convolving data with a filter, it convolves data
with other data.

c(x1,%x2) = Y {fi(x1+0),fa(x2 + 0))
oc|[—k,k]|x[—k,k]

e This requires d - K*2 multiplications where d is the number of channels.

 Comparing all patch combinations involves W22 - H*2 such computations.



Correlation Layer

e Given two feature maps 1 and 2, the network
compares each patch from 1 with each patch from {2
(using square patches of size K=2k+1)

e Correlation operator is identical to convolution, but
iInstead of convolving data with a filter, it convolves data
with other data.

c(x1,Xp) = Z (f1(x1 +0), f2(x2 + 0))
oc|[—k,k]|x[—k,k]

Given a maximum displacement D, we compute correlations c(x1, x2) only in a
neighborhood of size D = 2r + 1.
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Correlation Layer

e Given two feature maps 1 and 2, the network
compares each patch from 1 with each patch from {2
(using square patches of size K=2k+1)

e Correlation operator is identical to convolution, but
iInstead of convolving data with a filter, it convolves data
with other data.
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FlowNetC (Correlation Network)

e Create two separate, yet identical processing streams
for the two images.

 Combine them at a later stage via a correlation layer.

FlowNetCorr




Feature Refinement

e 2D pooling reduces spatial resolution, which degrades
performance for pixel-prediction tasks (e.g., optical flow).

* Deconvolutional and max unpooling layers are used to
upscale feature maps to higher spatial resolution.

*

Input Image Spatial Features in the Last Convolutional Layer

e
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Feature Refinement

e 2D pooling reduces spatial resolution, which degrades
performance for pixel-prediction tasks (e.g., optical flow).

e Deconvolutional and max unpooling layers are used to
upscale feature maps to higher spatial resolution.




Feature Refinement

e The output of the deconvolutional and unpooling layers is
an enlarged and dense activation map.
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Loss Function

* The authors use Euclidean distance between the
predicted flow vector and the ground truth, averaged
over all pixels

Ground truth FlowNetS
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Training Data

e The existing optical flow datasets are too small for
effective CNN training.

Frame Frames with Ground truth

pairs ground truth  density per frame

Middlebury 72 8 100%
KITTI 194 194 50%
Sintel 1,041 1,041 100%




Training Data

e The existing optical flow datasets are too small for
effective CNN training.

Frame Frames with Ground truth

pairs ground truth  density per frame

Middlebury 72 8 100%

KITTI 194 194 50%

Sintel 1,041 1,041 100%
(Flying Chairs | 22,872 22,872 100%)




Flying Chairs Dataset

* A synthetic dataset created by applying affine
transformations to Flickr images and a rendered set of 3D
chair models.

e 964 images from Flickr with a resolution of 1024 x 768 are
used.

e 3D chairs are superimposed on the Flickr images.




Results

e The performance is evaluated using average endpoint
errors (in pixels).

Method Sintel Clean Sintel Final KITTI Middlebury train  Middlebury test | Chairs | Time (sec)
train rast train test train  test | AEE AAE AEE AAE rest CPU GPU
EpicFlow [30] 240 412 370 A/.29 | 3.47 a5 | 0.31 3.24 0.39 3.55 2.04 16
DeepFlow [35] 3.3 5.8 | 456 T7.27 | 4.58 ax | 0.21 .04 0.42 4.22 3.53 17
EPPM [3] - 6.49 - 8.38 - 4.2 - - 0.33 3.36 - - 0.2
LDOF [6] 429 756 | 642 012 | 13.73 124 | 045 4.97 0.56 4,55 3.47 65 2.5
FlawNerS 4.50 7.42 h.45 843 | R.26 - 1.04 13.28 - - 2.7 - 0.08
FlowNeltS+v 3.66 A.45 4.76 T7.67 | 6.50 0.33 3.87 2.86 1.05
FlowNelS+I1 (3.66) 6.06 | (1.44) 7.76 | 7.52 4.1 | 0.98 15.20 - - 3.04 - 0.08
FlowNetS+it+v || (2.97) 6.16 | (4.07) 722 | 6.07 7.6 | 0.32 3.84 0.47 1.58 3.03 - 1.05
FlowNetC 431 T7.28 | H8T 881 | 9.35 - 1.15 15.64 - - 2.19 - 0.15
FlowNelC-v 307 627 | Hh25 RDL | TA5 0.34 3.02 2.61 1.12
FlowNelC-I1 (3.78) 6.85 | (5.28) &.51 | 8.7Y - 0.93 12.33 - - 2.27 - 0.15
FlowNetC~ft+v || (3.20) 6.08 | (4.83) 7.88 | 7.31 - 0.33 3.81 0.50 4.02 2.67 - 1.12




Results

e The performance is evaluated using average endpoint
errors (in pixels).

Method Sintel Clean Sintel Final KITTI Middlebury train  Middlebury test | Chairs | Time (sec)
train rast train test train  test | AEE AAE AEE AAE rest CPU GPU
EpicFlow [30] 240 4121 370 629 | 347 38 | 0.31 3.24 0.39 3.50 2.04 16
DeepFlow [35] 3.3 5.8 | 456 T7.21 | 4.58 ax | 0.21 .04 0.42 4.22 3.53 17 :
EPPM [3] - 6.49 - 8.38 - 4.2 - - 0.33 3.36 - - 0.2
LDOF [6] 429 756 | 642 012 | 13.73 124 | 0.45 4.97 0.56 4,55 3.47 65 2.5
wiNer 480 742 | B.ah mdn | B26 - | .00 1308 - - 271 N GWS
FlowNetS+v 3.66 6.45 4.76 T7.67 | 6.50 0.33 3.87 2.86 1.05
FlowNelS+1( (3.66) 6.06 | (1.44) 7.76 | 7.52 4.1 | 0.88  13.20 - - 3.04 - 0.08
FlowNetS+it+v || (2.97) 6.16 | (4.07) 722 | 607 7.6 | 0.32 3.84 0.47 1.58 3.03 - 1.05
FlowNetC 431 T7.28 | H.8T 881 | 9.35 - 1.15 15.64 - - 2.19 - 0.15
FlowNelC-v 307  6.27T | 525 R80DL | T.A45 (.34 3.02 2.61 1.12
FlowNelC-I1 (3.78) 6.85 | (5.28) &.51 | 8.7Y - 0.93 12.33 - - 2.27 - 0.15
FlowNetC-ft+v || (3.20) 6.08 | (4.83) 7.88 | 7.31 - 0.33 3.81 0.50 4.02 2.67 - 1.12

The networks trained just on the non-realistic Flying Chairs perform very well on
real optical flow datasets.



e The performance is evaluated using average endpoint
errors (in pixels).

Results

Method Sintel Clean Sintel Final KITTI Middlebury train  Middlebury test | Chairs | Time (sec)
train rast train test | train AEE AAE AEE AAE rest CPU GPU
EpicFlow [30] 240 412 | 3.70 6.29 | 3.47 0.31 3.24 0.39 3.55 2.04 16
DeepFlow [35] 3.3 5.8 | 456 T7.21 | 4.58 0.21 .04 0.42 4.22 3.53 17
EPPM [3] - .49 - 8.38 - - - 0.33 3.36 - - 0.2
LDOF [6] 429 7.56 | 642 012 | 13.73 0.45 4.97 0.56 4,55 3.47 65 2.5
FlawNerS 4.50 7.42 5.45 843 | R26 1.04 13.28 - - 2.71 - 0.08
FlowNetS+v 3.66 A.45 4.76 T7.67 | 6.50 0.33 3.87 2.86 1.05
FlowNelS+I[1 (3.66) 6.06 | (1.44) 7.7 7.92 0.98 15.20 - - 3.04 - 0.03
FlowNetS+it+v (12971 6.16 | 14.07) 7.22 | 6.07 0.32 384 047 458 ) 3.03 - 105
FlowNetC 431 T7.28 | 58T 881 | 9.35 1.15 15.64 - - 2.19 - 0.15
FlowNelC-v 307 62T | Hh25 RDL | TA5 0.34 3.02 2.61 1.12
FlowNelC-ft (3.78) 6.85 | (5.28) &.51 | 8.7Y 0.93 12.33 - 2.27 - 0.15
FlowNetC~fi+v |((3.20)  6.08 | (4.83)  7.88 | 7.31 0.33 381  0.50 4.52 ) 2.67 - 112

FlowNetC performs very similarly to FlowNetS in most cases (on the realistic

flow datasets).




Results

e The performance is evaluated using average endpoint

errors (in pixels).

Method Sintel Clean Sintel Final KITTI Middlebury train  Middlebury test | Chairs | Time (sec)
train rast train test train  test | AEE AAE AEE AAE rest CPU GPU
EpicFlow [30] 240 412 ] 370 629 | 347 3% | 0.31 3.24 0.39 3.50 2.04 16 - )
DeepFlow [35] 3.3 5.8 | 456 T7.27 | 4.58 ax | 0.21 .04 0.42 4.22 3.53 17
EPPM [3] - 6.49 - 8.38 - 4.2 - - 0.33 3.36 - - 0.2
LDOF [6] 429 756 | 642 012 | 13.73 12.4 | 045 4.97 0.56 4,55 3.47 65 2.5
FlawNerS 4.50 7.42 h.45 843 | R.26 - 1.04 13.28 - - 2.7 - 0.08
FlowNetS+v 3.66 A.45 4.76 T7.67 | 6.50 0.33 3.87 2.86 1.05
FlowNelS+I1 (3.66) 6.06 | (1.44) 7.76 | 7.52 4.1 | 0.898 15.20 - - 3.04 - 0.03
FlowNetS+it+v || (2.97) 6.16 | (4.07) 722 | 607 7.6 | 0.32 3.84 0.47 1.58 3.03 - 1.05
FlowNetC 431 T7.28 | H8T 881 | 9.35 - 1.15 15.64 - - 2.19 - 0.15
FlowNelC-v 307 62T | Hh25 RDL | TA5 0.34 3.02 2.61 1.12
FlowNelC-I1 (3.78) 6.85 | (5.28) &.51 | 8.7Y - 0.93 12.33 - - 2.27 - 0.15
FlowNetC-ft+v || (3.20) 6.08 | (4.83) 7.88 | 7.31 - 0.33 3.81 0.50 4.02 2.67 - 1.12 )

Comparable results with state-of-the-art and lower computational cost.



Qualitative Results

Ground truth EpicFlow FlowNe21S FlowNetC
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Contributions

» The first attempt to train a CNN to directly predict
optical flow from two input images.

« Simple, efficient, and effective approach.

» The introduction of Flying Chairs, the largest optical
flow dataset at the time.

« Strong generalization from synthetic to real data.



Discussion Questions

* If we trained a video classification model on synthetic data
and then tested it on real data it would perform poorly. Why
does such a strategy work in this case?
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Discussion Questions

* If we trained a video classification model on synthetic data
and then tested it on real data it would perform poorly. Why
does such a strategy work in this case?

» Why does the correlation network perform so similarly to
the baseline network?

* The FlowNets often produce visually appealing results, but
their results are still worse in terms of endpoint error. Why?



