MoCoGAN: Decomposing Motion and Content for Video Generation CVPR 2018

Sergey Tulyakov, Snap Research

Ming-Yu Liu, Xiaodong Yang, Jan Kautz NVIDIA

{mingyul,xiaodongy,jkautz}@nvidia.com

stulyakov@snap.com

Motivation

- deep feature representation of data in a unsupervised manner
- generate novel data for various applications
- very good image generation models
- weather prediction, autonomous driving

https://thispersondoesnotexist.com/

Challenges

- both the appearance model and the motion model
- the time dimension brings in a huge amount of variations
- human beings are more sensitive to motion

Previous approach

VGAN, TGAN: video as a point in latent space

Cons:

- Complexity
- Fixed length video

Approach

 $\max_{G_{\mathbf{I}}} \min_{D_{\mathbf{I}}} \mathcal{F}_{\mathbf{I}}(D_{\mathbf{I}}, G_{\mathbf{I}}) \qquad \qquad \mathcal{F}_{\mathbf{I}}(D_{\mathbf{I}}, G_{\mathbf{I}}) = \mathbb{E}_{\mathbf{x} \sim p_{X}}[-\log D_{\mathbf{I}}(\mathbf{x})] + \mathbb{E}_{\mathbf{z} \sim p_{Z_{\mathbf{I}}}}[-\log(1 - D_{\mathbf{I}}(G_{\mathbf{I}}(\mathbf{z})))]$

Latent space: $Z_{I} = Z_{C} \times Z_{M}$ $Z_{C} = \mathbb{R}^{d_{C}}, Z_{M} = \mathbb{R}^{d_{M}}$ $d = d_{C} + d_{M}$

$$[\mathbf{z}^{(1)}, ..., \mathbf{z}^{(K)}] = \begin{bmatrix} \begin{bmatrix} \mathbf{z}_{\mathrm{C}} \\ \mathbf{z}_{\mathrm{M}}^{(1)} \end{bmatrix}, ..., \begin{bmatrix} \mathbf{z}_{\mathrm{C}} \\ \mathbf{z}_{\mathrm{M}}^{(K)} \end{bmatrix} \end{bmatrix}$$

Content subspace:

$$\mathbf{z}_{\mathrm{C}} \sim p_{Z_{\mathrm{C}}} \equiv \mathcal{N}(\mathbf{z}|0, I_{d_{\mathrm{C}}})$$

Mot

tion subspace:
$$[\epsilon^{(1)}, ..., \epsilon^{(K)}] \xrightarrow{RNN} Z_M(1), ..., Z_M(K)$$

 $\epsilon^{(k)} \sim p_E \equiv \mathcal{N}(\epsilon | 0, I_{d_E})$

GI	Configuration	D_{I}	Configuration	$D_{\rm V}$	Configuration
Input	$[\mathbf{z}_{\mathrm{a}} \sim \mathcal{N}(0, \mathbf{I}), \mathbf{z}_{\mathrm{m}} \sim R_{\mathrm{M}}]$	Input	height \times width \times 3	Input	$16 \times \text{height} \times \text{width} \times 3$
0	DCONV-(N512, K6, S0, P0), BN, LeakyReLU	0	CONV-(N64, K4, S2, P1), BN, LeakyReLU	0	CONV3D-(N64, K4, S1, P0), BN, LeakyReLU
1	DCONV-(N256, K4, S2, P1), BN, LeakyReLU				
2	DCONV-(N128, K4, S2, P1), BN, LeakvReLU	1	CONV-(N128, K4, S2, P1), BN, LeakyReLU	1	CONV3D-(N128, K4, S1, P0), BN, LeakyReLU
		2	CONV-(N256, K4, S2, P1), BN, LeakyReLU	2	CONV3D-(N256 K4 S1 P0) BN LeakvReLU
3	DCONV-(N64, K4, S2, P1), BN, LeakyReLU				COTTOD (11200, 111, 01, 10), D1, Doukyredd
4	DCONV-(N3, K4, S2, P1), BN, LeakyReLU	3	CONV-(N1, K4, S2, P1), Sigmoid	3	CONV3D-(N1, K4, S1, P0), Sigmoid

 $\max_{G_{\mathrm{I}},R_{\mathrm{M}}} \min_{D_{\mathrm{I}},D_{\mathrm{V}}} \mathcal{F}_{\mathrm{V}}(D_{\mathrm{I}},D_{\mathrm{V}},G_{\mathrm{I}},R_{\mathrm{M}})$

$$\mathbb{E}_{\mathbf{v}}[-\log D_{\mathrm{I}}(S_{1}(\mathbf{v}))] + \mathbb{E}_{\tilde{\mathbf{v}}}[-\log(1 - D_{\mathrm{I}}(S_{1}(\tilde{\mathbf{v}})))] + \mathbb{E}_{\mathbf{v}}[-\log D_{\mathrm{V}}(S_{\mathrm{T}}(\mathbf{v}))] + \mathbb{E}_{\tilde{\mathbf{v}}}[-\log(1 - D_{\mathrm{V}}(S_{\mathrm{T}}(\tilde{\mathbf{v}})))],$$

Categorical dynamics: $\begin{bmatrix} \mathbf{z}_{A} \\ \epsilon^{(1)} \end{bmatrix}, ..., \begin{bmatrix} \mathbf{z}_{A} \\ \epsilon^{(K)} \end{bmatrix} \end{bmatrix}$ $\mathcal{F}_{V}(D_{I}, D_{V}, G_{I}, R_{M}) + \lambda L_{I}(G_{I}, Q)$

Dataset

Name	Number of videos
Shape motion	4000
MUG Facial Expression	1254
Tai-Chi	4500
Weizmann Human Actions	81
UCF101	13 220

Video Generation Performance

ACD	Shape Motion	Facial Expressions
Reference	0	0.116
VGAN [40]	5.02	0.322
TGAN [<mark>30</mark>]	2.08	0.305
MoCoGAN	1.79	0.201

ACD: Average Content Distance

L2 distance between average color vectors (Shape motion)

L2 distance between OpenFace feature vector (Facial expression)

Video Generation Performance

Inception :	score			Facial expression and Tai-Chi datasets			
	VGAN TGAN		MoCoGAN	User preference, %	Facial Exp.	Tai-Chi	
			$12.42 \pm .03$	MoCoGAN / VGAN	84.2 / 15.8	75.4 / 24.6	
UCF101	$8.18 \pm .05$	$11.85 \pm .07$		MoCoGAN / TGAN	54.7 / 45.3	68.0 / 32.0	

Inception score:

- Images have variety
- Each image distinctly looks like something

Qualitative evaluation

Categorical Video Generation

Image-to-video Translation

 User preference, %
 Tai-Chi

 MoCoGAN / C-VGAN
 66.9 / 33.1

 MoCoGAN / MCNET
 65.6 / 34.4

Strengths

- A Novel GAN framework for video generation.
- Can control content and motion in video generation.
- Several experiments with multiple datasets.

Weaknesses

- Small and medium sized dataset.
- Assuming there is a fixed content for the whole video.
- Does not work well with bigger dataset (Kinetics or even UCF101).

Discussion questions

- Why do we need image discriminator?
- Do you think the assumption of fixed content for the video is reasonable? Can we learn everything from data?

Thank you Questions?