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Motivation

e deep feature representation of data in
a unsupervised manner

e generate novel data for various
applications

e very good image generation models

e weather prediction, autonomous driving

https://thispersondoesnotexist.com/
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Challenges

e Dboth the appearance model and the motion model
e the time dimension brings in a huge amount of variations
e human beings are more sensitive to motion



Previous approach

VGAN, TGAN: video as a point in latent space
Cons:

e Complexity
e Fixed length video



Approach

Content subspace Motion subspace
Motion 1 Motion 2
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MoCoGAN
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MoCoGAN
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Dataset

Name

Shape motion

MUG Facial Expression
Tai-Chi

Weizmann Human Actions

UCF101

Number of videos
4000

1254

4500

81

13 220



Video Generation Performance

ACD Shape Motion  Facial Expressions
Reference 0 0.116
VGAN [40] 5.02 0.322
TGAN [30] 2.08 0.305
MoCoGAN 1.79 0.201

ACD: Average Content Distance
L2 distance between average color vectors (Shape motion)

L2 distance between OpenFace feature vector (Facial expression)



Video Generation Performance

_ Facial expression and Tai-Chi datasets
Inception score

VGAN TGAN  MoCoGAN User preference, % Facial Exp.  Tai-Chi

MoCoGAN/VGAN 84.2/15.8 75.4/24.6

UCFIOL 818+05 1L85+07 124220 e GAN/TGAN 547/453  68.0/320

Inception score:
e Images have variety

e Each image distinctly looks like something



Qualitative evaluation




Categorical Video Generation
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Image-to-video Translation

User preference, % Tai-Chi

MoCoGAN /C-VGAN 66.9/33.1
MoCoGAN /MCNET  65.6/34.4




Strengths

e A Novel GAN framework for video generation.
e (Can control content and motion in video generation.
e Several experiments with multiple datasets.



Weaknesses

e Small and medium sized dataset.
e Assuming there is a fixed content for the whole video.
e Does not work well with bigger dataset (Kinetics or even UCF101).



Discussion questions

e \Why do we need image discriminator?
e Do you think the assumption of fixed content for the video is reasonable? Can
we learn everything from data?



Thank you
Questions?



