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Audio-Visual Temporal Synchronization

• Can we learn general audio and video models from self-
supervised synchronization?



• The video model is trained to recognize temporal audio-
visual synchronization.

Audio-Visual Temporal Synchronization



• Separate audio and video subnetworks allow feature 
extraction and finetuning on single modality.

Architecture



• The model is trained by minimizing the contrastive loss 
function. 

• The authors optimize the audio and video streams to 
produce small distance on positive pairs and larger 
distance on negative pairs.
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• "easy" negatives (audio and video come from different 
samples). 

• "hard" negatives (same sample, audio and video are non-
overlapping). 

• "super-hard" (same sample, audio and video are 
overlapping but still out of sync).

Selection of Negative Examples



• Progressively increasing the difficulty of the problem 
yields accuracy gains on downstream tasks. 

• Audiovisual Temporal Synchronization accuracy is 
evaluated on the Kinetics-400 test set, which includes 
only negatives of “easy” type.

Curriculum Learning



• The authors assess the effectiveness of the AVTS learned 
representation for downstream action recognition tasks. 

• The pretrained model is fine-tuned on UCF101 and 
HMDB51. 

• No labeled data is used during pretraining.
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• Evaluation of audio features learned with AVTS on two 
audio classification benchmarks: ESC-50 and 
DCASE2014. 

• The audio sub-network is not fine-tuned on the target 
datasets.
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• The results are evaluated on UCF-101.

Multi-modal Action Recognition

AVTS

AVTS



• Impact of curriculum learning on the downstream tasks 
performance. 

• The evaluation is done for both audio classification and 
action recognition.

Curriculum Learning



• Impact of curriculum learning on the downstream tasks 
performance. 

• The evaluation is done for both audio classification and 
action recognition.

Curriculum Learning

Curriculum learning helps downstream 
audio classification tasks



• Impact of curriculum learning on the downstream tasks 
performance. 

• The evaluation is done for both audio classification and 
action recognition.

Curriculum Learning

Curriculum learning helps downstream 
action recognition tasks



Contributions

• Simple and elegant self-supervised pretraining scheme 
on audiovisual video data. 

• Effective curriculum learning approach. 

• Impressive performance on both video-only, audio-only, 
and video+audio classification benchmarks.
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• Why use two separate video and audio streams as 
opposed to a single unified audiovisual model?
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• Why use two separate video and audio streams as 
opposed to a single unified audiovisual model? 

• What’s the advantage of using video+audio data for 
self-supervised learning compared to using video-only 
data?


