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Learning Video Representations from
Visual Data
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Motivation

e We want to use signals from different modalities (e.g.,
speech, audio, text, etc.) to learn better video
representations.

Multi-Modal Inputs

00:12.600 . 4.
(Jocy:) Kiss her. Kiss her!

00:16.771

(Janice:) 1"l see you later, sweetie. Bye, Joey,

Q: Who is kissing Chandler? A: Janice Q: What does she do after?
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Audio-Visual Temporal Synchronization

e Can we learn general audio and video models from self-
supervised synchronization?

Video Clip
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Audio-Visual Temporal Synchronization

The video model is trained to recognize temporal audio-
visual synchronization.
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Architecture

e Separate audio and video subnetworks allow feature
extraction and finetuning on single modality.
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Loss Function

 The model is trained by minimizing the contrastive loss
function.

* The authors optimize the audio and video streams to
produce small distance on positive pairs and larger
distance on negative pairs.
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Loss Function

 The model is trained by minimizing the contrastive loss
function.

* The authors optimize the audio and video streams to
produce small distance on positive pairs and larger
distance on negative pairs.

Minimize distance on positive pairs
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Loss Function

 The model is trained by minimizing the contrastive loss
function.

* The authors optimize the audio and video streams to
produce small distance on positive pairs and larger
distance on negative pairs.

Maximize distance on negative pairs
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Selection of Negative Examples

* "easy" negatives (audio and video come from different
samples).

* "hard" negatives (same sample, audio and video are non-
overlapping).

e "super-hard" (same sample, audio and video are
overlapping but still out of sync).

Positive | Video Hard negative | Video Super hard | Video
pair Audio pair Audio negative pair [, -
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Curriculum Learning

e Progressively increasing the difficulty of the problem
yields accuracy gains on downstream tasks.

* Audiovisual Temporal Synchronization accuracy is
evaluated on the Kinetics-400 test set, which includes
only negatives of “easy” type.

Method Negative type | Epochs| Accuracy (%)
easy 1-90 69.0)
Single learning stage 757 €asy, 25% hard | 1 9{) 58.9
nard 1-80 52.3
easy 1-50 67 2

Curriculum learning
(1.e., second learning stage applied after a first 75% easy, 25% hard | 5

1-90 78.4
stage of 1-50 epochs with easy negatives only) nard 51 - 90 65.7



Action Recognition Experiments

* The authors assess the effectiveness of the AVTS learned
representation for downstream action recognition tasks.

e The pretrained model is fine-tuned on UCF101 and
HMDB51.

* No labeled data is used during pretraining.

Video Network

Pretraining Pretraining -
Archilecture Dataset Supervision UCF101 | IIMDB5!
MC2 none N/A 67.2 41.2
M(C2 Kinertics self-supervised (AVTS) ¥3.6 543
MC2 Kinetics fully supervised (action labels) 87.9 62.0
MC3 none N/A 69.1 439
MC3 Kinetics self-supervised (AV'IS) ¥3.8 569
MC3 Audioset sell-supervised (AVTS) 89.0 61.6
MC3 Kinetics fully supervised (action labels) 90.5 66.8
I3D-RGB none N/A 571 40.0
I3D-RGB Kinetics self-supervised (AVTS) 83.7 33.0
13D-RGB* Imagenet fully supervised (object labels) 84.5 49.8
[3D-RGB* Kinctics [ully supervised (action labels) 95.1 743
I3D-RGB* Kinetics + Imagenet | fully supervised (object+action labels) 93.6 74.8
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Audio Classification

e Evaluation of audio features learned with AVTS on two
audio classification benchmarks: ESC-50 and

DCASE2014.
* The audio sub-network is not fine-tuned on the target
datasets.
Auxiliary  Auxihiary i auxiliary  ESC-50 DCASE2014
Method L L _ T T
dataset supervision  examples accuracy (%) accuracy (%)
SVM-MIFCC [29] none none none 39.6 -
Random Forest [29] none nong none 44.3 -
Qur audio subnet none nona none 61.6 72
SoundNet [20] SoundNet  sell 2M+ 7472 88
L*-Net [21] SoundNet  self 2M+ 79.3 93
Our AVTS features Kinetics self 230K 76.7 91
Our AVTS features AudioSet sell [.8M 80.6 93
Our AVTS features SoundNet  self 2M+ 823 94
Human performance [21] n/a n/a n/a 81.3 -
Statc-of-the-art (RBM)[31] none none nonc 86.5




Audio Classification

e Evaluation of audio features learned with AVTS on two
audio classification benchmarks: ESC-50 and

DCASE2014.
* The audio sub-network is not fine-tuned on the target
datasets.
Auxiliary  Auxiliary i auxiliary  ESC-50 DCASE2014
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Random Forest [29] nong nong none 44.3 -
(Our audio subnet none none none 61.6 72 )
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Multi-modal Action Recognition

 The results are evaluated on UCF-101.

Model Accuracy (%)
Owens et al. (vision only) [5] 77.6
AVTS (vision only) 85.8

Owens et al. (multisensory) [5] 82.1
AVTS (multisensory) 87.0




Curriculum Learning

e Impact of curriculum learning on the downstream tasks
performance.

 The evaluation is done for both audio classification and
action recognition.

Method AVTS-Kinetics ESC-50 DCASE HMDBS1 UCF101

Our AVTS - single stage  69.8 70.6 §9.2 46.4 77.1
Our AVTS - curriculum 78 4 ]2.3 94.1 56.9 85.8

L°-Net 743 79.3 93 40.2 723
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Curriculum Learning

e Impact of curriculum learning on the downstream tasks

performance.

 The evaluation is done for both audio classification and

action recognition.

Method AVTS-Kinetics ESC-30 DCASE (HMDBS 1 UCFI1 OD
Our AVTS - single stage  69.8 70.6 §9.2 46.4 77.1
Our AVTS - curriculum 78 .4 R2.3 04.1 56.9 85.8
L3-Net 743 793 93 k40'2 723 y

Curriculum learning helps downstream
action recognition tasks



Contributions

« Simple and elegant self-supervised pretraining scheme
on audiovisual video data.

« Effective curriculum learning approach.

 Impressive performance on both video-only, audio-only,
and video+audio classification benchmarks.



Discussion Questions

 Why use two separate video and audio streams as
opposed to a single unified audiovisual model?



Discussion Questions

 Why use two separate video and audio streams as
opposed to a single unified audiovisual model?

« What's the advantage of using video+audio data for
self-supervised learning compared to using video-only
data?



